Application to Coupled Flow Problems

Daniel Arndt

Georg-August-Universität Göttingen Institute for Numerical and Applied Mathematics

5th deal.II-Workshop

August 3-7, 2015

1						
Inτ	٦ro	ъa	u	CI	OI	n

Nodal-based MHD

Non-Isothermal Flow

Summary

Table of Contents

- 2 Rotating Frame of Reference
- 3 Nodal-based MHD
- 4 Non-Isothermal Flow

Introduction		000000	00000000000	Summary
Table of	Contonto			

Table of Contents

- 2 Rotating Frame of Reference
- 3 Nodal-based MHD
- 4 Non-Isothermal Flow

and the second second	
Introc	luction

Nodal-based MHD

Non-Isothermal Flow

Summary

The Full Set of Equations

Velocity and Pressure

$$\partial_t \boldsymbol{u} - \nu \Delta \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla \boldsymbol{p} + 2\boldsymbol{\omega} \times \boldsymbol{u} = \boldsymbol{f}_u - \beta \theta \boldsymbol{g} + (\nabla \times \boldsymbol{b}) \times \boldsymbol{b}$$

 $\nabla \cdot \boldsymbol{u} = 0$

Magnetic Field

$$\partial_t \boldsymbol{b} + \lambda \nabla \times (\nabla \times \boldsymbol{b}) - \nabla \times (\boldsymbol{u} \times \boldsymbol{b}) = \boldsymbol{f}_{\boldsymbol{b}},$$

 $\nabla \cdot \boldsymbol{b} = 0$

Temperature

$$\partial_t \theta - \alpha \Delta \theta + (\boldsymbol{u} \cdot \nabla) \theta = f_{\theta}$$

Introd	luction
IIIIUUU	uction

Nodal-based MHD 000000 Non-Isothermal Flow

Summary

Local Projection Stabilization

Idea

- Separate discrete function spaces into small and large scales
- Add stabilization terms only on small scales.

Notations and prerequisites

- Family of shape-regular macro decompositions $\{\mathcal{M}_h\}$
- Let $D_M \subset [L^\infty(M)]^d$ denote a FE space on $M \in \mathcal{M}_h$.
- For each M ∈ M_h, let π_M: [L²(M)]^d → D_M be the orthogonal L²-projection.
- $\kappa_M = Id \pi_M$ fluctuation operator
- Averaged streamline direction $\boldsymbol{u}_M \in \mathbb{R}^d$: $|\boldsymbol{u}_M| \leq C \|\boldsymbol{u}\|_{L^{\infty}(M)}, \|\boldsymbol{u} - \boldsymbol{u}_M\|_{L^{\infty}(M)} \leq Ch_M |\boldsymbol{u}|_{W^{1,\infty}(M)}$

Introduction	Rotating Frame of Reference	Nodal-based MHD 000000	Non-Isothermal Flow	Summary
Assumpt	ions			

Assumption - Approximation

It holds for all $w \in W^{l,2}(M)$, $M \in \mathcal{M}_h$ and $l \leq s \leq k$

$$\|\kappa_M \boldsymbol{w}\|_{L^2(M)} \leq Ch_M^I \|\boldsymbol{w}\|_{W^{I,2}(M)}$$

Assumption - Inf-Sup Stability

Consider FE spaces (V_h, Q_h) satisfying a discrete inf-sup-condition:

$$\inf_{q \in Q_h \setminus \{0\}} \sup_{v \in V_h \setminus \{0\}} \frac{(\nabla \cdot v, q)}{\|\nabla v\|_{L^2(\Omega)}} \ge \beta > 0$$

$$\Rightarrow \quad \boldsymbol{V_h}^{div} := \{v_h \in V_h \mid (\nabla \cdot v_h, q_h) = 0 \quad \forall q_h \in Q_h\} \neq \{0\}$$

Nodal-based MHD 000000 Non-Isothermal Flow

Summary

Table of Contents

Rotating Frame of Reference
 Analytical Results

- Numerical Results
- 3 Nodal-based MHD
- 4 Non-Isothermal Flow

Rotating Frame of Reference

Nodal-based MHD

Non-Isothermal Flow

Summary

Rotating Frames of Reference

Navier Stokes Equations in an Inertial Frame of Reference

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \nu \Delta \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{f} \qquad \text{in } \Omega \times (0, T)$$
$$\nabla \cdot \boldsymbol{u} = 0 \qquad \text{in } \Omega \times (0, T)$$

$\Omega \subset \mathbb{R}^d$ bounded polyhedral domain

Navier Stokes Equations in a Rotating Frame of Reference

$$\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla)\boldsymbol{v} - \nu \Delta \boldsymbol{v} + 2\boldsymbol{\omega} \times \boldsymbol{v} + \nabla \widetilde{\boldsymbol{\rho}} = \boldsymbol{f} \quad \text{in } \Omega \times (0, T)$$
$$\nabla \cdot \boldsymbol{v} = 0 \quad \text{in } \Omega \times (0, T)$$

$$\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \boldsymbol{r}) = -\frac{1}{2} \nabla (\boldsymbol{\omega} \times \boldsymbol{r})^2 \qquad \widetilde{\boldsymbol{\rho}} = \boldsymbol{\rho} - \frac{1}{2} (\boldsymbol{\omega} \times \boldsymbol{r})^2$$

Introduction	Rotating Frame of Reference	Nodal-based MHD 000000	Non-Isothermal Flow 000000000	Summary
Weak F	ormulation			

Find
$$\mathcal{U}_h = (\mathbf{u}_h, p_h) : (0, T) \rightarrow \mathbf{V}_h \times Q_h$$
, such that
 $(\partial_t \mathbf{u}_h, \mathbf{v}_h) + \mathcal{A}_G(\mathbf{u}_h, \mathcal{U}_h, \mathcal{V}_h) + (2\omega \times \mathbf{u}_h, \mathbf{v}_h) = (\mathbf{f}, \mathbf{v}_h)$
for all $\mathcal{V}_h = (\mathbf{v}_h, q_h) \in \mathbf{V}_h \times Q_h$

where

$$egin{aligned} \mathcal{A}_G(oldsymbol{w};oldsymbol{\mathcal{U}},oldsymbol{\mathcal{V}}) &:= a_G(oldsymbol{\mathcal{U}},oldsymbol{\mathcal{V}}) + c(oldsymbol{w};oldsymbol{u},oldsymbol{v}) \ a_G(oldsymbol{\mathcal{U}},oldsymbol{\mathcal{V}}) &:=
u(
ablaoldsymbol{u},
ablaoldsymbol{v}) - (p,
abla \cdotoldsymbol{v}) + (q,
abla \cdotoldsymbol{u}) \ c(oldsymbol{w},oldsymbol{u},oldsymbol{v}) - ((oldsymbol{w}\cdot
abla)oldsymbol{v},oldsymbol{u}) \ c(oldsymbol{w},oldsymbol{u},oldsymbol{v}) &:= rac{((oldsymbol{w}\cdot
abla)oldsymbol{v},oldsymbol{v}) - ((oldsymbol{w}\cdot
abla)oldsymbol{v},oldsymbol{u}) \ c(oldsymbol{w},oldsymbol{u},oldsymbol{v}) &:= rac{((oldsymbol{w}\cdot
abla)oldsymbol{v},oldsymbol{v}) - ((oldsymbol{w}\cdot
abla)oldsymbol{v},oldsymbol{u}) \ c(oldsymbol{w},oldsymbol{v},oldsymbol{v}) &:= rac{(oldsymbol{w}\cdot
abla)oldsymbol{v},oldsymbol{v}) - ((oldsymbol{w}\cdot
abla)oldsymbol{v},oldsymbol{v}) \ c(oldsymbol{w},oldsymbol{v}) - (oldsymbol{w}\cdot
abla)oldsymbol{v},oldsymbol{v}) \ c(oldsymbol{w},oldsymbol{v},oldsymbol{v}) = rac{(oldsymbol{w}\cdot
abla)}{2} \ c(oldsymbol{w},oldsymbol{v},oldsymbol{v}) \ c(oldsymbol{w},oldsymbol{w},oldsymbol{v}) \ c(oldsymbol{w},oldsymbol{w},oldsymbol{v})) \ c(oldsymbol{w},oldsymbol{w},oldsymbol{v}) \ c(oldsymbol{w},oldsymbol{v},oldsymbol{w}) \ c(oldsymbol{w},oldsymbol{w},oldsymbol{w}) \ c(oldsymbol{w},oldsymbol{w},oldsymbol{w},oldsymbol{w},oldsymbol{w},oldsymbol{w}) \ c(oldsymbol{w},oldsymbol{w},oldsymbol{w},oldsymbol{w},oldsymbol{w},oldsymbol{w},oldsymbol{w},oldsymbol{w},oldsymbol{w},oldsymbol{w},oldsymbol$$

Introduction	Rotating Frame of Reference ○●○○○○○○○○○○	Nodal-based MHD 000000	Non-Isothermal Flow 000000000	Summary
Stabiliz	ation Terms			

• LPS Streamline upwind Petrov-Galerkin (SUPG)

$$s_u(\boldsymbol{w}_h; \boldsymbol{u}_h, \boldsymbol{v}_h) := \sum_{M \in \mathcal{M}_h} \tau_M(\boldsymbol{w}_M)(\kappa_M((\boldsymbol{w}_M \cdot \nabla)\boldsymbol{u}_h), \kappa_M((\boldsymbol{w}_M \cdot \nabla)\boldsymbol{v}_h))_M$$

• grad-div

$$t_h(\boldsymbol{w}_h; \boldsymbol{u}_h, \boldsymbol{v}_h) := \sum_{M \in \mathcal{M}_h} \gamma_M(\boldsymbol{w}_M) (\nabla \cdot \boldsymbol{u}_h, \nabla \cdot \boldsymbol{v}_h)_M$$

• LPS Coriolis stabilization

$$a_h(\boldsymbol{w}_h; \boldsymbol{u}_h, \boldsymbol{v}_h) := \sum_{M \in \mathcal{M}_h} \alpha_M(\boldsymbol{w}_M) (\kappa_M(\boldsymbol{\omega}_M \times \boldsymbol{u}_h), \kappa_M(\boldsymbol{\omega}_M \times \boldsymbol{v}_h))_M$$

	tκ	0	а	ct	10	m
			u		IU	ш

Nodal-based MHD

Non-Isothermal Flow

Summary

Convergence Result

Theorem

For a sufficiently smooth solution we obtain for $\mathbf{e}_h = \mathbf{u}_h - j_u \mathbf{u}$:

$$\|m{e}_h\|^2_{L^\infty(0,t;[L^2(\Omega)]^d)} + \int_0^t |||m{e}_h(au)|||^2_{LPS} \, d au \leq C \exp(C_G t) h^{2k}$$

with a Gronwall constant $C_{G}(\boldsymbol{u}) = 1 + C|\boldsymbol{u}|_{L^{\infty}(0,T;W^{1,\infty}(\Omega))} + Ch \|\boldsymbol{u}\|_{L^{\infty}(0,T;W^{1,\infty}(\Omega))}^{2}$

The parameters have to satisfy $(1 \le s \le k)$:

$$h_M \le C \frac{\sqrt{\nu}}{\|\boldsymbol{u}_h\|_{L^{\infty}(M)}} \qquad \qquad \tau_M \le \tau_0 \frac{h_M^{2(k-s)}}{\|\boldsymbol{u}_M\|^2}$$
$$\gamma_M = \gamma_0 \qquad \qquad \alpha_M \le \alpha_0 \frac{h_M^{2(k-s-1)}}{\|\boldsymbol{\omega}\|_{L^{\infty}(M)}^2}$$

Rotating Frame of Reference

Nodal-based MHD

Non-Isothermal Flow

Summary

Numerical Results, Rotating Poiseuille Flow

•
$$\Omega = [-2,2] \times [-1,1]$$

• $\boldsymbol{u}(x,y) = \begin{cases} (1-y^2,0)^T, & x = -2\\ (0,0)^T, & |y| = 1 \end{cases}$, $(\nabla \boldsymbol{u} \cdot \boldsymbol{n})(x = 2, y) = 0$
• $\boldsymbol{u}_0 = 0$, $\boldsymbol{p}_0 = 0$, $\boldsymbol{f} = 0$ $\boldsymbol{\omega} = (0,0,100)$, $\nu = 10^{-3}$

Flow for the parameters $\boldsymbol{\omega}=(0,0,1),\,
u=10^{-1}$

Rotating Frame of Reference

Nodal-based MHD 000000

Non-Isothermal Flow

Summary

Rotating Poiseuille Flow, grad-div

Rotating Frame of Reference

Nodal-based MHD

Non-Isothermal Flow

Summary

Rotating Poiseuille Flow, grad-div

Rotating Frame of Reference

Nodal-based MHD

Non-Isothermal Flow

Summary

Rotating Poiseuille Flow, SUPG Coriolis

Rotating Frame of Reference

Nodal-based MHD

Non-Isothermal Flow

Summary

Rotating Poiseuille Flow, SUPG Coriolis

Rotating Frame of Reference

Nodal-based MHD

Non-Isothermal Flow

Summary

Rotating Poiseuille Flow, SUPG Coriolis Adaptive

Rotating Frame of Reference

Nodal-based MHD

Non-Isothermal Flow

Summary

Rotating Poiseuille Flow, SUPG Coriolis Adaptive

Rotating Frame of Reference

Nodal-based MHD

Non-Isothermal Flow

Summary

Taylor-Proudman, Stewartson Layer

Navier Stokes Equations in a Rotating Frame of Reference

$$\frac{\partial \boldsymbol{u}}{\partial t} + Ro(\boldsymbol{u} \cdot \nabla)\boldsymbol{u} + 2\hat{\boldsymbol{e}}_{z} \times \boldsymbol{u} = Ek\Delta\boldsymbol{u} - \nabla p$$

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\boldsymbol{u} = r\sin\theta\hat{\boldsymbol{e}}_{\phi} \qquad \text{at } r = r_{i}$$

$$\boldsymbol{u} = \boldsymbol{0} \qquad \text{at } r = r_{o}$$

$$r_i = 1/2$$
 $r_o = 3/2$
 $Ro := \Delta\Omega/\Omega$ $Ek := \frac{\nu}{\Omega(r_o - r_i)^2}$

Rotating Frame of Reference

Nodal-based MHD

Non-Isothermal Flow

Summary

Taylor-Proudman, Stewartson Layer

Fluid structure between two rotating spheres

Figure: $Ek = 10^{-6}$

Rotating Frame of Reference

Nodal-based MHD 000000 Non-Isothermal Flow

Summary

Taylor-Proudman, Stewartson Layer

Fluid structure between two rotating spheres

Figure: $Ek = 10^{-4}Ro = -.5$

Table of Contents

2 Rotating Frame of Reference

3 Nodal-based MHD

- Analytical Results
- Numerical Results
- 4 Non-Isothermal Flow

 Introduction
 Rotating Frame of Reference
 Nodal-based MHD
 Non-Isothermal Flow
 Summar

 Incompressible Nodal-based MHD - Joint work with
 Benjamin Wacker
 Summar

Stationary Linearized Incompressible Nodal-based MHD model

$$-\nu\Delta \boldsymbol{u} + (\boldsymbol{a}\cdot\nabla)\boldsymbol{u} + \nabla \boldsymbol{p} - (\nabla\times\boldsymbol{b})\times\boldsymbol{d} = \boldsymbol{f}_{\boldsymbol{u}},$$
$$\nabla\cdot\boldsymbol{u} = 0,$$
$$\lambda\nabla\times(\nabla\times\boldsymbol{b}) + \nabla \boldsymbol{r} - \nabla\times(\boldsymbol{u}\times\boldsymbol{d}) = \boldsymbol{f}_{\boldsymbol{b}},$$
$$\nabla\cdot\boldsymbol{b} = 0$$

- **u** velocity field, *p* kinematic pressure
- *a* extrapolation for *u*
- **b** induced magnetic field, r magnetic pseudo pressure
- **d** extrapolation for **b**
- ν kinematic viscosity, λ magnetic diffusivity

Introduction	Rotating Frame of Reference	Nodal-based MHD	Non-Isothermal Flow 0000000000	Summary
Weak Fo	ormulation			

Find
$$\mathcal{U}_h := (\boldsymbol{u}_h, \boldsymbol{b}_h, p_h, r_h) \in \boldsymbol{V}_h \times \boldsymbol{C}_h \times \boldsymbol{Q}_h \times S_h$$
 such that
 $\mathcal{A}_{G,u}(\mathcal{U}_h, \mathcal{V}_h) + \mathcal{A}_{G,b}(\mathcal{U}_h, \mathcal{V}_h) = \langle \boldsymbol{f}_u, \boldsymbol{v} \rangle + \langle \boldsymbol{f}_b, \boldsymbol{c} \rangle,$
for all $\mathcal{V}_h := (\boldsymbol{v}_h, \boldsymbol{c}_h, q_h, s_h) \in \boldsymbol{V}_h \times \boldsymbol{C}_h \times \boldsymbol{Q}_h \times S_h.$

$$\mathcal{A}_{G,u}(\boldsymbol{U},\boldsymbol{V}) = \nu(\nabla \boldsymbol{u},\nabla \boldsymbol{v}) + \langle \boldsymbol{a} \cdot \nabla \boldsymbol{u}, \boldsymbol{v} \rangle - \langle (\nabla \times \boldsymbol{b}) \times \boldsymbol{d}, \boldsymbol{v} \rangle - (p, \nabla \cdot \boldsymbol{v}) + (\nabla \cdot \boldsymbol{u}, q) \mathcal{A}_{G,b}(\boldsymbol{U},\boldsymbol{V}) = \lambda(\nabla \times \boldsymbol{b}, \nabla \times \boldsymbol{c}) - \langle \nabla \times (\boldsymbol{u} \times \boldsymbol{d}), \boldsymbol{c} \rangle + (\nabla r, \boldsymbol{c}) - (\boldsymbol{b}, \nabla s)$$

Introduction	Rotating Frame of Reference	Nodal-based MHD	Non-Isothermal Flow 000000000	Summary
Stabilizat	tion			

LPS-SU

$$s_1(\boldsymbol{u}_h, \boldsymbol{v}_h)_M := au_{SU}(\kappa_M((\boldsymbol{a}_M \cdot \nabla)\boldsymbol{u}_h), \kappa_M((\boldsymbol{a}_M \cdot \nabla)\boldsymbol{v}_h))_M$$

• grad-div velocity

$$s_2(\boldsymbol{u}_h, \boldsymbol{v}_h)_M := au_{gd,u} (\nabla \cdot \boldsymbol{u}_h, \nabla \cdot \boldsymbol{v}_h)_M$$

LPS-Lorentz

$$s_3(\boldsymbol{b}_h, \boldsymbol{c}_h)_M := au_{Lor}(\kappa_M((\nabla imes \boldsymbol{b}_h) imes \boldsymbol{d}_M), \kappa_M((\nabla imes \boldsymbol{c}_h) imes \boldsymbol{d}_M))_M$$

• LPS-Induction

$$s_4(oldsymbol{u}_h,oldsymbol{v}_h)_M := au_{Ind}(\kappa_M(
abla imes (oldsymbol{u}_h imes oldsymbol{d}_M)), \kappa_M(
abla imes (oldsymbol{v}_h imes oldsymbol{d}_M)))_M$$

PSPG

$$s_5(r_h, s_h)_M := \tau_{PSPG}(\nabla r_h, \nabla s_h)_M$$

• grad-div magnetic

$$s_6(\boldsymbol{b}_h, \boldsymbol{c}_h)_M := au_{gd,b} (
abla \cdot \boldsymbol{b}_h,
abla \cdot \boldsymbol{c}_h)_M$$

1 12	111	0	а	\sim		0	n
		U.	u		υı	U	

Convergence Result

Theorem

For sufficiently smooth solutions we obtain:

$$egin{aligned} & \|oldsymbol{U}_h - oldsymbol{U}\|_{\mathsf{G}}^2 + \|oldsymbol{U}_h - oldsymbol{U}\|_{\mathsf{LPS}}^2 \ & \leq C\sum_M h_M^{2k} \Big(|oldsymbol{u}|_{k+1,\omega_M}^2 + |oldsymbol{b}|_{k+1,\omega_M}^2 + |oldsymbol{p}|_{k,\omega_M}^2 \Big) \end{aligned}$$

with a parameter choice according to

$$h_{M} \leq C \min \left\{ \frac{\sqrt{\nu}}{\|\boldsymbol{a}\|_{\infty,M}}, \frac{\sqrt{\lambda}}{\|\boldsymbol{d}\|_{\infty,M}}, \frac{\sqrt{\nu}}{\|\boldsymbol{d}\|_{\infty,M}} \right\}$$
$$\tau_{SU} \leq C \frac{h_{M}^{2(k-s)}}{|\boldsymbol{a}_{M}|^{2}} \quad \tau_{gd,u} \sim \gamma_{0} \quad \tau_{Lor}, \tau_{Ind} \leq C \frac{h_{M}^{2(k-s)}}{|\boldsymbol{d}_{M}|^{2}}$$
$$\tau_{PSPG} \sim \frac{L_{0,m}^{2}}{\lambda} \quad \tau_{gd,b} \sim \frac{h_{M}^{2}\lambda}{L_{0,m}^{2}}$$

	tκ	0	а	ct	10	m
			u		IU	ш

Nodal-based MHD ○●○○○○ Non-Isothermal Flow

Summary

Analytical 2D Problem

Consider on $\Omega = (-1,1) imes (-1,1)$ for $t \in [0,0.1]$ the solution:

$$\boldsymbol{u}(t, x, y) := \boldsymbol{b}(t, x, y)$$

$$:= \exp\left(\frac{t}{25}\right) \left(x^4 \sin\left(\frac{\pi t}{10}\right), -4x^3 y \sin\left(\frac{\pi t}{10}\right)\right)^T,$$

$$\boldsymbol{p}(x, y) := x^2 + y^2, \qquad \boldsymbol{r}(x, y) := 0$$

Boundary conditions: $\boldsymbol{u}|_{\partial\Omega} = \boldsymbol{u}_b$ $\mathbf{n} \times \mathbf{b} = \mathbf{n} \times \mathbf{b}_D$ Parameters:

$$\begin{aligned} \Delta t &= 10^{-4}, \qquad \nu = 10^{-6}, \qquad \lambda = 10^{-6} \\ \tau_2 &= 1, \qquad \tau_5 = \frac{h^2 \lambda}{L_0^2}, \qquad \tau_6 = \frac{L_0^2}{\lambda}, \qquad L_0 = 2 \end{aligned}$$

Ansatz spaces: $V_h/Q_h = C_h/S_h = \left[\mathbb{Q}_2\right]^2/\mathbb{Q}_1$

Introd	luction	F

Nodal-based MHD 000000 Non-Isothermal Flow

Summary

Convergence Results

Figure: $L^2(\Omega)$ Errors for the 2D-time-dependent analytical problem

1 12	ro				•		
		'u	u	C	u	ıU	ш

Nodal-based MHD ○00●00 Non-Isothermal Flow

Summary

Convergence Results

Figure: Errors for the 2D-time-dependent analytical problem

I	-		-	
Intr	ou	u	CU	or

Nodal-based MHD ○○○○●○ Non-Isothermal Flow

Summary

Convergence Results

Figure: Divergence Errors for the 2D-time-dependent analytical problem

Introduction	Rotating Frame of Reference	Nodal-based MHD	Non-Isothermal
		000000	

Summary

Convergence Results

Figure: Pressure Errors for the 2D-time-dependent analytical problem

Table of Contents

- 2 Rotating Frame of Reference
- 3 Nodal-based MHD
- 4 Non-Isothermal Flow
 - Analytical Results
 - Numerical Results

Rotating Frame of Reference

Nodal-based MHD 000000 Non-Isothermal Flow

Summary

Non-Isothermal Flow - Joint work with Helene Dallmann

Oberbeck-Boussinesq-Model

$$\partial_t \boldsymbol{u} - \nu \Delta \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{f}_u - \beta \theta \boldsymbol{g}$$
$$\nabla \cdot \boldsymbol{u} = \boldsymbol{0}$$
$$\partial_t \theta - \alpha \Delta \theta + (\boldsymbol{u} \cdot \nabla) \theta = \boldsymbol{f}_{\theta}$$

- velocity \boldsymbol{u} , kinematic pressure p, temperature θ
- thermal diffusivity α , thermal expansion coefficient β , gravity **g**
- small temperature differences \Rightarrow density $\rho \approx const$.

Introduction	Rotating Frame of Reference	Nodal-based MHD 000000	Non-Isothermal Flow	Summary
Weak Fo	rmulation			

Find
$$(\mathcal{U}_h, \theta_h) = (\mathbf{u}_h, p_h, \theta_h) : (0, T) \rightarrow \mathbf{V}_h^{div} \times Q_h \times \Theta_h$$
 such that
 $(\partial_t \mathbf{u}_h, \mathbf{v}_h) + \mathcal{A}_{G,u}(\mathbf{u}_h, \mathcal{U}_h, \mathcal{V}_h) = (f, \mathbf{v}_h) - (\beta \theta_h g, \mathbf{v}_h)$
 $(\partial_t \theta_h, \psi_h) + \mathcal{A}_{G,\theta}(\mathbf{u}_h, \theta_h, \psi_h) = (f_\theta, \psi_h)$
for all $(\mathbf{V}_h, \psi_h) = (\mathbf{v}_h, q_h, \psi_h) \in \mathbf{V}_h \times Q_h \times \Theta_h$

where

$$\begin{aligned} \mathcal{A}_{G,u}(\boldsymbol{w}; \mathcal{U}, \mathcal{V}) &:= a_G(\mathcal{U}, \mathcal{V}) + c(\boldsymbol{w}; \boldsymbol{u}, \boldsymbol{v}) \\ a_G(\mathcal{U}, \mathcal{V}) &:= \nu(\nabla \boldsymbol{u}, \nabla \boldsymbol{v}) - (p, \nabla \cdot \boldsymbol{v}) + (q, \nabla \cdot \boldsymbol{u}) \\ \mathcal{A}_{G,\theta}(\boldsymbol{u}, \theta, \psi) &:= \alpha(\nabla \theta, \nabla \psi) + c(\boldsymbol{u}; \theta, \psi) \\ c(\boldsymbol{w}, \boldsymbol{u}, \boldsymbol{v}) &:= \frac{((\boldsymbol{w} \cdot \nabla)\boldsymbol{u}, \boldsymbol{v}) - ((\boldsymbol{w} \cdot \nabla)\boldsymbol{v}, \boldsymbol{u})}{2} \end{aligned}$$

Introduction	Rotating Frame of Reference	Nodal-based MHD 000000	Non-Isothermal Flow	Summary
Stabiliza	tion terms			

• LPS-SUPG for the velocity

$$s_u(\boldsymbol{u}_h; \boldsymbol{w}_h, \boldsymbol{v}_h) := \sum_{M \in \mathcal{M}_h} \tau_M^u(\boldsymbol{u}_h) (\kappa_M^u(\boldsymbol{u}_M \cdot \nabla \boldsymbol{w}_h), \kappa_M^u(\boldsymbol{u}_M \cdot \nabla \boldsymbol{v}_h))_M$$

• grad-div

$$t_h(\boldsymbol{u}_h; \theta_h, \psi_h) := \sum_{M \in \mathcal{M}_h} \gamma_M(\boldsymbol{u}_h) (\nabla \cdot \boldsymbol{w}_h, \nabla \cdot \boldsymbol{v}_h)_M$$

• LPS-SUPG for the temperature

$$s_{\theta}(\boldsymbol{u}_{h};\theta_{h},\psi_{h}) := \sum_{M \in \mathcal{M}_{h}} \tau_{M}^{\theta}(\boldsymbol{u}_{M})(\kappa_{M}^{\theta}(\boldsymbol{u}_{M}\cdot\nabla\theta_{h}),\kappa_{M}^{\theta}(\boldsymbol{u}_{M}\cdot\nabla\psi_{h}))_{M}$$

Introduction	Rotating Frame of Reference	Nodal-based MHD 000000	Non-Isothermal Flow	Summary	
Converg	ence Result				

Theorem

For sufficiently smooth solutions we obtain for $\boldsymbol{e}_h = \boldsymbol{u} - \boldsymbol{u}_h$ and $\boldsymbol{e}_{\theta} = \theta - \theta_h$:

$$\begin{split} \|\boldsymbol{e}_{h}\|_{L^{\infty}(0,t;L^{2}(\Omega))}^{2} + \int_{0}^{t} |||(\boldsymbol{e}_{h}(\tau),0)|||_{LPS}^{2} d\tau \\ + \|\boldsymbol{e}_{\theta}\|_{L^{\infty}(0,t;L^{2}(\Omega))}^{2} + \int_{0}^{t} |[\boldsymbol{e}_{\theta}(\tau)]|_{LPS}^{2} d\tau \leq \mathcal{O}(h^{2k}) \end{split}$$

with a parameter choice according to

$$h_{M} \leq C \frac{\sqrt{\nu}}{\|\boldsymbol{u}\|_{L^{\infty}(M)}} \qquad h_{M} \leq C \frac{\sqrt{\alpha}}{\|\boldsymbol{u}\|_{L^{\infty}(M)}}$$
$$\tau_{M} \leq \tau_{0} \frac{h_{M}^{2(k-s)}}{|\boldsymbol{u}_{M}|^{2}} \qquad \tau_{M}^{\theta} \leq \tau_{0,\theta} \frac{h_{M}^{2(k-s_{\theta})}}{|\boldsymbol{u}_{M}|^{2}}$$
$$\gamma_{M} = \gamma_{0}$$

Rotating Frame of Reference

Nodal-based MHD

Non-Isothermal Flow

Summary

Bubble Enriched Ansatz Spaces

Enrich the tensor product-polynomial space \mathbb{Q}_k to obtain

$$\mathbb{Q}^+_k(\hat{\mathcal{T}}) := \mathbb{Q}_k(\hat{\mathcal{T}}) + \psi \cdot \mathsf{span}\{\hat{x}^{k-1}_i, i = 1, \dots, d\}$$

with bubble functions $\psi(\hat{\boldsymbol{x}}) := \prod_{i=1}^{d} (1 - \hat{x}_i^2)$.

Used spaces

- \bullet Taylor-Hood elements $(\mathbb{Q}_2/\mathbb{Q}_1)$ for velocity and pressure
- \mathbb{Q}_2 or \mathbb{Q}_2^+ for the temperature
- \mathbb{Q}_1 for the projection spaces

Rotating Frame of Reference

Nodal-based MHD

Non-Isothermal Flow

Summary

Rayleigh-Bénard Convection

Flow driven by temperature difference

Dirichlet BC's for bottom and top plate:

$$\theta_{bottom} = 0.5, \quad \theta_{top} = -0.5,$$

and isolating hull:

$$\boldsymbol{n} \cdot \nabla \theta|_{r=0.5} = 0$$

 $R = .5 \quad H = 1 \quad \beta = 1$ $\nu = Pr^{-0.5} \cdot Ra^{0.5}$ $\alpha = Ra^{-0.5} \cdot Pr^{-0.5}$

No-slip boundary conditions for the velocity: $\label{eq:u} {\pmb u} = {\pmb 0}|_{\partial\Omega}$

Rotating Frame of Reference

Nodal-based MHD 000000 Non-Isothermal Flow

Summary

Isosurfaces of the Temperature, Pr = 0.786

Figure: Isosurfaces of the Temperature, T = 1000, Pr = 0.786, $Ra = 10^5$, $Ra = 10^7$, $Ra = 10^9$, $N = 10 \cdot 16^3$, $\gamma_M = 0.1$

Introduction	Rotating 000000	Rotating Frame of Reference			MHD	Non-Isothermal Flow ○○○○●○○○○○	Summary

Benchmark quantity - Nusselt number

- Heat flux: bottom (warm) \Rightarrow top (cold) $q_z := u_z \theta - \alpha \partial_z \theta$
- Nusselt number

$$Nu(z_0,t) := \frac{L}{\alpha A \Delta \theta} \langle q_z \rangle_{z=z_0}(z_0,t)$$

measure for <u>convective heat transfer</u> conductive heat transfer

• $Nu(z_0, t)$ independent of z_0 for a stationary temperature field.

Introduction	Rotating Frame of Reference	Nodal-based MHD	Non-Isothermal Flow	Summary
			000000000	

Time-development

Figure: Time-development of Nu for $t \in [0, 300]$, $\gamma_M = 0.1 Pr = 0.786$, $Ra = 10^5$ und $Ra = 10^7 (N = 10 \cdot 8^3)$

Rotating Frame of Reference

Nodal-based MHD 000000 Non-Isothermal Flow

Summary

Dependence on $Ra~(N = 10 \cdot 8^3$ cells)

Ra	γ_M	Nu ^{avg}	σ	Nu ^{ref} [DNS]
10 ⁵	0	3.8396	0.0356	3.83
	1	3.8364	0.0307	
	0.1	3.8372	0.0303	
10 ⁶	0	8.6457	0.3378	8.6
	1	8.5148	0.0542	
	0.1	8.6475	0.0190	
10 ⁷	0	16.4143	1.8302	16.9
	1	16.7361	0.1569	
	0.1	16.8767	0.1068	
10 ⁸	0	37.7301	29.4731	31.9
	1	30.7236	0.7044	
	0.1	31.2902	0.6957	

Rotating Frame of Reference

Nodal-based MHD

Non-Isothermal Flow

Summary

Isotropic Mesh, $Ra = 10^9 (N = 10 \cdot 8^3)$

γ_{M}	τ^u_M	$ au_{\rm L}^{ heta}$	$Nu_{Id,th}^{avg}$	$\sigma_{\textit{Id,th}}$	$Nu_{Id,bb}^{avg}$	$\sigma_{\it Id,bb}$	Nu ^{ref}
0.01	0	0	41.4584	40.1989	47.5335	23.4029	63.1
0.01	hu1	0	38.7093	43.0326	44.2998	24.7851	
0.01	0	hu1	37.6081	10.8360	54.2603	16.5349	
0.01	hu1	hu1	37.0516	10.3065	49.1255	12.9235	

$$\begin{array}{l} th: \ (\mathbb{Q}_2/\mathbb{Q}_1) \wedge \mathbb{Q}_1 \wedge (\mathbb{Q}_2/\mathbb{Q}_1), \\ bb: \ (\mathbb{Q}_2^+/\mathbb{Q}_1) \wedge \mathbb{Q}_1 \wedge (\mathbb{Q}_2^+/\mathbb{Q}_1) \\ hu1: \ \tau_{M/L}^{u/\theta} = \frac{1}{2}h/\|\boldsymbol{u}_h\|_{\infty,M/L} \end{array}$$

Introduction	Rotating Frame of Reference	Nodal-based MHD 000000	Non-Isothermal Flow ○○○○○○○○●○	
			o ² \ 11	

Anisotropic mesh, $Ra = 10^9 (N = 10 \cdot 8^3)$ cells

γ_{M}	τ^u_M	$ au_{\mathrm{L}}^{\theta}$	Nu_{th}^{avg}	σ_{th}	Nu_{bb}^{avg}	σ_{bb}	<i>Nu</i> ^{ref}
0	0	0	118.7932	137.5588			63.1
0.01	0	0	55.5231	1.3464	58.1419	1.4833	
0.01	hu1	0	53.8371	1.4130	58.2691	1.4702	
0.01	0	hu1	52.4530	3.4847	56.5274	3.0578	
0.01	hu1	hu1	51.8141	3.4344	54.0410	3.3333	

th:
$$(\mathbb{Q}_2/\mathbb{Q}_1) \wedge \mathbb{Q}_1 \wedge (\mathbb{Q}_2/\mathbb{Q}_1),$$

bb: $(\mathbb{Q}_2^+/\mathbb{Q}_1) \wedge \mathbb{Q}_1 \wedge (\mathbb{Q}_2^+/\mathbb{Q}_1)$
hu1: $\tau_{M/L}^{u/\theta} = \frac{1}{2}h/||\boldsymbol{u}_h||_{\infty,M/L}$

Introduction	Rotating Frame of Reference	Nodal-based MHD 000000	Non-Isothermal Flow ○○○○○○○○●	Summary
Vary Di	scretization			

	#cells	#DoF(u)	#DoF(p)	#DoF(heta)	$Nu_{\gamma_M=0.01}^{ m avg}$	$\sigma_{\gamma_M=0.01}$
th	10 · 8 ³	129,987	5,729	43,329	55.5231	1.3464
bb	$10 \cdot 8^3$	176,067	5,729	58,689	58.1419	1.4833
th	$10 \cdot 16^{3}$	1,011,075	43,329	337,025	60.4889	1.1574
bb	$10 \cdot 16^3$	1,379,715	43,329	459,905	61.3628	0.4668

Introduction	Rotating Frame of Reference	Nodal-based MHD 000000	Non-Isothermal Flow	Summary
Summary	1			

Analytical and numerical framework for LPS stabilized model of incompressible flow with

- rotating frames of references
- temperature coupling
- magnetohydrodynamic coupling

Next step: Combine all of these!

Introduction	Rotating Frame of Reference	Nodal-based MHD 000000	Non-Isothermal Flow 000000000	Summary
Reference	<u>م</u> ح			

- Daniel Arndt, Helene Dallmann, and Gert Lube, *Local Projection FEM Stabilization for the Time-Dependent incompressible Navier-Stokes Problem*, Numerical Methods for Partial Differential Equations **31** (2015), no. 4, 1224–1250.
- Daniel Arndt and Gert Lube, FEM with Local Projection Stabilization for Incompressible Flows in Rotating Frames, Preprint.
- Helene Dallmann and Daniel Arndt, *Stabilized Finite Element Methods for the Oberbeck-Boussinesq Model*, In Preparation.
- Helene Dallmann, *Finite Element Methods with Local Projection Stabilization for Thermally Coupled Incompressible Flow*, Ph.D. thesis, Georg-August-Universität Göttingen, 2015.
 - Benjamin Wacker, Daniel Arndt, and Gert Lube, *Nodal-Based Finite Element Methods with Local Projection Stabilization for Linearized Incompressible Magnetohydrodynamics*, CMAME (2015).

Thanks for your attention!