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Abstract

We consider conforming finite element (FE) approximations of the time-
dependent, incompressible Navier-Stokes problem in rotating frames with
inf-sup stable approximation of velocity and pressure. In case of high
Reynolds numbers, a local projection stabilization (LPS) method is con-
sidered. In particular, the idea of streamline upwinding is combined with
stabilization of the divergence-free constraint and a stabilization for the
Coriolis term. For the arising nonlinear semidiscrete problem a stability
and convergence analysis is given. The spatial analysis is an extension
to our previous result in [1] for inertial frame of references to rotating
ones. The convergence with respect to time extends results for the Stokes
case [2] in inertial frames of references to rotating ones. Some numerical
experiments complement the theoretical results. July 29, 2015

1. Introduction

We consider the time-dependent Navier-Stokes equations

ou—vAu+ (u-Vu+2wxu+Vp=f in (0,T)x Q, (
V-u=0 in (0,7) x Q, (

w=0 in (0,T)x 09, (

u(0,:) =up(-) in Q (

— = = =
N N

)
)
)
)

in a bounded polyhedral domain 2 C R?, d € {2,3}. Here u: (0,7) x Q — R?
and p: (0,7) x 2 — R denote the unknown velocity and pressure fields for given
viscosity Ek > 0 and external forces f € [L2(0,T; L*(Q))]%.

Defining Uyef, Lyer and wy.s as characteristic velocity, length and angular velocity
for the considered problem, we can derive critical non-dimensional parameters.

*The work was supported by SFB 963 founded by German research council (DFG).
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These are the Ekman number Ek, the Rossby number Ro and the Reynolds
number Re defined by

Uref Lref _
v 2Lrefw7‘ef

RO—L Ek — v o

Re = - -
° 212 jwrep  Re

Using these quantities a non-dimensional version of the Navier-Stokes equations
is given by

s — EkAt+ Ro(w-V)a+20 x @+ Vp=f in (0,7)xQ, (1.5)
V-a=0 in (0,7)xQ, (1.6)

w=0 in (0,7)x0dQ, (1.7

w(0,-) = uo(-) in Q. (1.8)

where we indicate non-dimensionality by hat ~. For the sake of simplicity we
will omit the hats ~ in the following.

In this paper, we consider stabilized finite element (FE) approximations of
problem (1.5)-(1.8). In particular, inf-sup stable velocity-pressure FE pairs are
chosen together with local projection stabilization (LPS). To our knowledge,
there are not many results available in the literature, even in the case of a
inertial frame of reference. The stationary case was considered in [3] under the
strong condition of small data. A related LPS model has been considered in [4]
for the stationary problem under a small data assumption. Some results for the
time-dependent case can be found in [5] and [6] where LPS-based subgrid models
of Smagorinsky type were considered.

For the linear Oseen problem, Matthies & Tobiska [7] provide a compre-
hensive overview regarding stabilized FE methods, in particular, in the case
of LPS methods for inf-sup stable FE methods. (For a corresponding review
and presentation of LPS methods with equal-order interpolation of velocity and
pressure, we refer to [8].) In [7], the authors consider basically two variants of
LPS methods: (1) stabilization of the streamline derivative b - V together with
grad-div stabilization, and (2) stabilization of the full velocity gradient.

Here, we consider variant (1) for the time-dependent Navier-Stokes problem
by extending the analysis in our paper [1] for the case of an inertial frame of
reference. As in [7] we consider different cases:

(i) Methods of order k without compatibility condition:

For standard pairs Vi, x Q, C V x Q := [W;*(Q)]? x L3(Q) of conforming
inf-sup stable velocity /pressure approximation of polynomial order k/k — 1 with
k € N\ {1}, one- and two-level variants of the LPS method are shown to be of
order k in the standard norm in V' x @. In the case of high Reynolds numbers
Req = ||u||p~(@)diam(Q2) /v = Roq/FEkq, the analysis requires a relatively mild
restriction on the mesh Reynolds number Rey; := ||w||p(anyhar/v. In the one-
level case, no enrichment of the discrete velocity space V7, is necessary (with
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possible exception of discontinuous spaces ;). The analysis heavily relies on
working in the subspace V% of discretely divergence-free functions.

Inspired by the approach of Burman & Fernandez in [9] for edge stabilized
FE methods (with equal-order discrete velocity-pressure) to problem (1.5)-(1.8),
we can show that in case of w € [L*°(0,T; WH>=(Q))]¢ the Gronwall constants
depends on the norm in this space but not explicitly on the Reynolds number.

(i) Methods of order k with compatibility condition:

In order to avoid the restriction on the mesh Reynolds number Rej;, we consider
such pairs V', x @, of polynomial order k/k — 1 with a special interpolation
operator in the discrete velocity space. This interpolator exists if a certain
(macro-)elementwise compatibility condition between the discrete velocities on
the fine mesh and on the projection space is valid, see [10]. Unfortunatelyly, this
interpolator is in general not applicable in Vﬁlf”.

We show that, in case of the mentioned compatibility condition, the restric-
tion on the mesh Reynolds number can be avoided. In particular, for one-level
methods this condition eventually requires an enrichment of the discrete velocity
space. Moreover, a careful selection of the discrete pressure space is necessary.

(111) Methods of order k + 1/2:

Finally, as in [7] we discuss methods of order k + 1/2 in the case of Ek < Ch.
For one-level methods, this is accomplished by increasing the polynomial order
of the discrete pressure in the setting of methods (ii).

For inf-sup stable (but not exactly divergence-free) pairs V', X @y, the ap-
plication of the so-called grad-div (or grad-div) stabilization is important. A
critical issue is the design of the stabilization parameter set. As a rule of thumb
a globally constant value v = vy, ~ 1 always improves mass conservation but
might be different from case to case. Even for the Stokes problem with Req = 0,
the results in [11] give no general result. On the other hand, for simplicial meshes
it is shown in [12] that solutions with Taylor-Hood elements [P]?/Py_1, k > d
converge with v — oo to the (pointwise divergence-free) Scott-Vogelius solution.
We address the choice of the stabilization parameter in more detail in numerical
experiments.

Outline of the paper: In Section 2 we introduce the LPS method for the time-
dependent Navier-Stokes problem. Then, in Section 3, stability issues and well-
posedness of the method are discussed. Methods of order k£ without enrichment
are considered in Section 4.1, whereas methods of order £ with enrichment are
the subject of Section 4.2. Methods of order k + % are addressed in Section 4.3.
Some numerical results together with a critical discussion of the parameter design
are given in Section 6.
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2. LPS Method for the Navier-Stokes Problem

In this section, we describe the model problem and the spatial semidiscretization
based on inf-sup stable interpolation of velocity and pressure together with local
projection stablization.

2.1. Time-Dependent Navier-Stokes Problem

In the following, we will consider the usual Sobolev spaces WP (2) with norm
| - [lwme), m € No,p > 1. In particular, we have LP(Q2) = WP(Q). Moreover,
the closed subspaces W, (), consisting of functions in W'2(Q) with zero trace
on 99, and L3(£2), consisting of L2-functions with zero mean in €2, will be used.
The inner product in L?*(D) with D C Q will be denoted by (-,+)p. In case of
D = ) we omit the index.
The variational formulation of problem (1.5)-(1.8) reads:
Find U = (u,p): (0,7) = V x Q := [W;*(Q)]¢ x L3(Q) such that

(Ou,v) + Ag(u; U, V) = (f,v) VYV =(v,q9) € V xXQ (2.1)
with the Galerkin form
Ag(w;U, V) = Ek(Vu, Vo) + 2w x u,v) — (p, V- v) + (¢, V - u)

::agTM,V)
0 2.2
+ %[((w V)u,v) — (w - V)v,u)} ) (22)
—c(wu,v)

The skew-symmetric form of the convective term c¢ is chosen for conservation
purposes. In this paper, we will assume that the velocity field w belongs to
[L>(0, T; W*°(Q))]¢ which ensures uniqueness of the solution.

2.2. Finite Element Spaces

For a simplex T € 7T;, or a quadrilateral/hexahedron T in R%, let T be the
reference unit simplex or the unit cube (—1,1)%. The bijective reference mapping
Fr: T — T is affine for simplices and multi-linear for quadrilaterals/ hexahedra.
Let P, and @, with [ € Ny be the set of polynomials of degree < [ and of
polynomials of degree <[ in each variable separately. Moreover, we set

Ry(T) := P/(T) on simplices T
: o Qi(T) on quadrilaterals/hexahedra 7'

Bubble-enriched spaces are

PH(T) :=PyT) + by - Pro(T), QF (T) :=Q(T)+¢ -span{z*, i=1,...,d}



D. Arndt and G. Lube: Navier-Stokes in Rotating Frames 5

with polynomial bubble function b; := H?:o 5\1 € If”dﬂ on the reference simplex T

with barycentric coordinates \; and with d-quadratic function (%) := [J%, (1 —
2?) on the reference cube. Define

Y _1 = {v, € L*(Q) : wy|ro Fr e Ry(T) VT € Tp},
Yh,l = Yh,fl N W1’2<Q)

and bubble-enriched spaces th; , accordingly.

For convenience, we write V;, = Ry, instead of V', = [V, 5]*NV (with obvious
modifications for RZ) and @ = R4,y instead of Q, = Y}, +(x—1) N Q.

ASSUMPTION 2.1: Let V), C [V ]? NV and Qn C Y11 NQ be FE spaces
satisfying a discrete inf-sup-condition
(V-v,q)

inf sup ———— > 0>0 2.3
7€Qr\{0} vev,\ {0} IVollollgllo 23

with a constant [ independent on h.

&y is the set of inner element faces E ¢ 0N of T,. We denote by hg the
diameter of the face E € &,. For two cells T and T}, shared by FE let ng be the
unit normal vector pointing from 7% into T},. For piecewise smooth functions
wy, we denote by [wp]g := (wa|ry)|E — (wh|ry )| e the jump over the face E.

2.3. Local Projection Stabilization

For a Galerkin approximation of problem (2.1)-(2.2) on an admissible partition
Ty of the polyhedral domain €2, consider finite dimensional spaces V', x Q) C
V' x Q. Then, the semidiscretized problem reads: Find U, = (up,pn): (0,7) —
Vi, x @y such that for all V), = (vp,qn) € Vi, X Qp:

(Opun,vp) + Ag(un;Un, Vi) = (f, o). (2.4)

The semidiscrete Galerkin solution of problem (2.4) may suffer from spurious
oscillations due to poor mass conservation, dominating advection or dominating
rotation. The idea of local projection stabilization (LPS) methods is to separate
discrete function spaces into small and large scales and to add stabilization terms
only on small scales.

Let {M;} be a family of shape-regular macro decompositions of €2 into
d-simplices, quadrilaterals (d = 2) or hexahedra (d = 3). In the one-level LPS-
approach, one has Mj; = Tj,. In the two-level LPS-approach, the decomposition
T is derived from M; by barycentric refinement of d-simplices or regular
(dyadic) refinement of quadrilaterals and hexahedra. We denote by hy and hy,
the diameter of cells T' € T, and M € M. It holds hy < hy; < Chy for all
T C M and M € M,,
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ASSUMPTION 2.2: Let the FE space Y, satisfy the local inverse inequality
||V'Uh||0’M < Ch]T/IIH'UhHO,M Yo, € Yh,ka M e M,,. (25)

ASSUMPTION 2.3: There are (quasi-)interpolation operators j,: V. — V, and
Jp: Q@ = Qp such that for all M € My, for allw € V N [WH(Q)]? with 2 <1 <
k+1:

lw = juwlloar + har|[V(w = juw)lloar < Chyllwllwrz,,) (2.6)
and for all g € Q N HY(M) with 2 <1 < k:

g — dnalloar + harl[V(q = p@)llor < CRYllallweeoy)- (2.7)

on a suitable patch wyy DO M. Moreover, let
||’U _ju'UHLOO(M) S OhM|'U|Wloo(M) Yv € [Wl’OO(M)]d

Let Dpy C [L®(M)]¢ denote a FE space on M € M, for uy. For each
M € My, let mpr: [L*(M)]¢ — Das be the orthogonal L*-projection. Moreover,
we denote by ks :=id — 7y the so-called fluctuation operator.

ASSUMPTION 2.4: The fluctuation operator Ky = id — 7y provides the approz-
imation property (depending on Dpyy and s € {0,--- [ k}):

H/iMwHO,M < C’thHwHWm(M), Yw € Wl’2<M), MeM,, I=0,... s. (28)

A sufficient condition for Assumption 2.4 is [P,_1]? C Djy.

For each macro element M € My, let the elementwise averaged streamline
direction uy; € R? and the elementwise averaged angular velocity wy; € R? be
such that

[unr| < Cllwl| ey, lw — warll Lo ary < Char|ulwros ) (2.9)
lwi| < Cllw| Lo (ar, |w — warllLear) < Char|w|wros(an.-

One possible definition is
u 1/u()d w 1/w()d (2.10)
= x) dx, = x) dr. )
MM M)y
The semidiscrete LPS model reads:
FindU;, = (up,pr): (0,T) = V, xQp, such that for all V), = (vp,, qn) € Vi xQp:

(f,vn) =(0un, vi) + Ac(un; U, Vh)

+ sp(wn; wp, v5) + tp(wn; up, vy) + ap(w, wp, w, vy) + i (P, n)
(2.11)
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with the streamline-upwind (SUPG)-type stabilization s, the grad-div (or grad-
div) stabilization ¢, the Coriolis stabilization a;, and pressure jump stabilizations
1y, according to

sn(wpsw,v) = Y Tar(war) (kar(war - V)u), kar((war - Vo))

MeMy,

2.12)

th(wp; u,v) == Z Y (war)(V - u, V- v)y, (2.13)
MeM;,

an(wy, wy, wi,vp) = Y ay(wy)((why X wy), K(wh X vp)y,  (2.14)
MeM;,

inpa) = Y, el lde)e (2.15)

EcOM,MeM,,

The set of stabilization parameters 7y (wy,), ap(w), yar(un), and ¢g has to be
determined later on. For reasons to be discussed later, we impose:

ASSUMPTION 2.5: Assume that for all M € My,:

-
0 < 7y(uy) < ™ 0 Bk Yo mﬁth < vy (uar) < v,
2.16)
o) (
0< < > 0.

In case of uy = 0 we set Ty (up) = 0.

3. Stability Analysis

In this section, we derive stability estimates for the discrete velocity and pressure
fields. Moreover, the existence of the solution of the LPS problem (2.11) is shown.

3.1. Notation

For the analysis, let us define the mesh-dependent expression ||| - |||Lps for all
V= (v,9) €V xQby

IVII[ips == EE| V|| + su(un; v,v) + an(w, wp, w, v) + ty(un; v,v) + in(q, q)-
(3.1)

This is motivated by symmetric testing ¥V = U together with w = uy, in (2.2)

|HVH|%PS = Ag(up; V, V) + sp(up; v, v)
+ th(un; v, v) + ap(w, v,w, v) +in(q, q)

due to the skew-symmetric form of the convective term. In the case i, = 0, we
will write

HlonlllLes = |l[(vn, 0)[||ps. (3.2)
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One basic idea of the numerical analysis is to handle the discrete velocity and
pressure separately since Assumption 2.1 implies that

Vi ={v, € Vi | (V- vp,qn) =0 Vg, € Qp} # {0} (3:3)

3.2. Velocity Estimates

The first result gives control of the kinetic energy and of the dissipation terms
for the discrete velocity u;, € V4%,

LEMMA 3.1: Let f € L'(0,T; L*(2)) and wy € L*(Q). For 0 <t < T, we obtain

1 ¢ 3
§||uh(t)l|%z<m +/ wn(DIZps dm < lun(0)[172(q) + §||f||%1<o,t;m<m>. (3.4)
0

Proof: Symmetric testing with V;, = (v;,,0) € V& x Q;, provides

a

7 ln 720y + Nl ps

DN | —

t
(Oyup, up) + Ag(un; Up, Up) + sp(wn; up, up) (3.5)
+ ap (W, up, w, up) + t,(up; wp, up)

= (fv uh)-
Estimate (3.5) gives

1d

d
lnllzzi0) = lunllr2@) = 5%”“}1“%2(9) < (f,un) < Fllz2@llunl 2@,

hence 4wy z2(0) < || fllr20)- Integrating in time leads to
t d t
Fen ()l 20 — lusoll 2y = / o2y dr < / 1) 2 dr

which provides
lwn(t)L2(0) < llwollL2@) + 1 F 20220 (3.6)
We start again from (3.5), integrate in time, apply (3.6) and Young’s inequality:
1 2 ' 2 1 2 '
S lua®)lz2(0) +/ lun(Mllps d7 < 5 l[un(0)l[22(0) +/ (F(7), wn(7))dr
0 0
3
< Huhm)”%?(g) + §Hf‘|%1(0,t;L2(Q))7
i.e., estimate (3.4) is valid. O

Now, we can prove an existence result for the discrete velocity.
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COROLLARY 3.1: There exists a discrete solution wy: [0,T] — V& of the
semidiscrete LPS model (2.11).

Proof: We look for a solution uy, : [0, 7] — V% of the semidiscrete problem

(Orun, vi) = (f,vn) — Ag(un;Un, Vi) — sn(un; wn, vy)

3.7
— ap(w, up, w,vp) — ty(wp; wp, V) (3.7)

with appropriate initial condition w,(0) = wug,. V¥ is a finite-dimensional
Banach space and the right hand side of (3.7) continuously depends on (¢, u;) €
[0,7] x V" As a consequence of Lemma 3.1, each (potential) solution of
(3.7) is bounded on [0,7]. This implies boundedness of the right hand side on
[0, 7] x V' Then the generalized Peano theorem is applicable. A local solution
of (3.7) can be extended to [0, T7. O

Remark: A uniqueness result for the semidiscrete problem (3.7) is still open.
However, if we assume Lipschitz continuity in time for f, the Picard-Lindelof
theorem yields uniqueness of the solution.

3.3. Pressure Estimates

The existence of the discrete pressure p, € @)y, is guaranteed via Assumption 2.1.
Moreover, we obtain the following stability result.

COROLLARY 3.2: Let uy, : [0,T] — V" C V}, be a solution of the Cauchy
problem (8.7). For 0 <t < T we obtain for the discrete pressure py,:

[Pnll L1 0.622(2)

1 t
< (Il eevir) + 1lswei) + K [ lun()les dr)
0

where

K =VEk + =% o[ wn|| oo 0.6: (<) pllwll e 0,609
vV EE

+ max \/TMHUMHLoo(o,t;Loo(M)) + dyar + Cpan||wl| oo (0,400 (ar)) -

Proof: According to the discrete inf-sup condition (2.3), see Assumption 2.1, we
have for all p, € @), the existence of a unique v, € V', with

V vy = —py, VULl 220y < B el 2 (3.8)

Testing in equation (2.11) with (v,0) € V), X Qp, we obtain via Friedrich’s
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inequality that
Ipnll720) = — (0n, V- 1)

= (f7'vh) — (Ovup, vy) — Ek(Vuy, Vop,) — 2(w x Uh,vh) — c(up; up, vp)

— sp(wn; wn, v5) — th(un; up, vy) — ap(wW, up, w, vy)

< Vvl 20 |1 F v + 10l v, -

CpRollup| =) + Cpl|lw]| L)
+ Ek+
(v JEF

a7l pqan) + dvae + Coantll@llzeqan) lluallzps]

From (3.8) we get

Bllpnllz) < | flleviy- + 10l (v, + Kll|unll|Lps.

Finally, the assertion follows via integration in time. a

4. Quasi-optimal Error Estimates

In this section, we derive quasi-optimal estimates for the kinetic energy and
dissipation (including fluctuations terms). To this goal, we decompose the error:

U—U,=U—JU)+ (JU-U,) = A+ E,=(n,.n) + (en,rn).  (4.1)

Here, J = (ju,jp) denotes an appropriate interpolator in V), x Q. We are
interested in methods of order k, i.e., there exists a constant C' > 0, independent
of critical data (like Ek, Ro and h) such that for 0 < ¢ < T and a sufficiently
smooth solution (u,p):

||6h||%°°(0,t);L2(Q)) + EkHVehHiz(o,t;W&,z(Q)

t
+/ [Sh(’uh; en, en) + th(un; en, en) + ap(w, e, w, Bh)]dT (4.2)
0

< Ch* <|u|i2(0,t;W"‘+172(Q)) + 10l 220 w2y + |p|22(0,t;W’%2(Q))>‘

In a first step (see Subsec. 4.1), we prove this result for a wide range of
FE pairs V', X @, under a (mild) mesh restriction. The basic tool will be to
work in the space V. In a second step (see Subsec. 4.2), we will remove the
mesh restriction. This is accomplished under an additional inf-sup condition, see
Assumption 4.2 below, which restricts the possible choices of V', x @y,. Finally,
we want to identify methods of order k + % for Ek < Ch, see Subsec. 4.3.
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4.1. Methods of Order k without Compatibility Condition
We will perform the error analysis for the velocity u, in V;lf”. Following Girault
& Scott [13], we apply a divergence-preserving interpolation j, : V' — Vﬁ“’. It
is shown in [13] that the approximation properties (2.6)-(2.7) in Assumption 2.3
remain valid on simplicial isotropic meshes if the right hand side Sobolev norms
are taken on a patch wy, O M and provided k& > d . It is argued in [13] that
the result can be easily extended to quadrilateral /hexahedral meshes and in this
case to k =2,d = 3.

We obtain the following quasi-optimal semidiscrete error estimate for the LPS-
model (2.11) with vanishing pressure jump terms, i.e., with i, = 0.

THEOREM 4.1: Let Assumption 2.1-2.5 be valid. Assume that u,(0) = juug. If
u € [L=(0, T; W1>°(Q))]4, then we obtain for the discrete velocity approzimation
en = up — juu of the LPS-method (2.11):

t
(A / lea()|Epg dr

t
< CZ/ eCa(w(t=7) [(Ek + Tarlunr P+ 1 d) [V, (D1 2200
M 0

A el (13
+<Ro <1+E—k<> piz -+ arlou? ) Im )

10m Py + 7arlwarlleas (V) ()
, d 1
tmin (s = ) + vl sar () 2o | dr

with (N, M) = (w — jyu,p — jpp) and the Gronwall constant
Ce(u) = 1+ CRolu|p=omwieq) + ChROHu”%OO(O,T;WLOO(Q)) (4.4)
where h := max,s hyy.

Proof: Subtracting (2.11) from (2.1) with V; = (ey,0) € V" x Q) and using
(4.1) leads to the error equation

0 = (O(u—up),en) +acg(U —Up, V4) + c(u;u, e,) — c(up; up, ep)
— sp(up; up, ep) — th(up; up, €p) — ap(w, up, w, ep)
= (0my, en) + (Oren, en) + ac(A, (en,0)) + ac(Ep, (en,0))
+ c(u;u, er) — c(wp; up, en) + sp(un; en, en) — sp(wn; juu, en)

+ th(un; en, en) — th(up; juu, en) + ap(w, ep, w, e,) — ap(w, juu, w, ey).
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Reordering the terms and using (3.1) implies

1
sOillenllzz@ + [llenlllzrs

= —(0m,, en) — ac(A, (en,0)) + c(up; upn, €,) — c(u; u, ep)
+ sn(un; juts, €n) + th(wn; jutt, €n) + ap(w, juu, w, ep)

= —(0m,, en) — Ek(Vn,, Ver) — (2w x n,,en) + (0, V - ep)
+ c(up; up, €p) — c(u;u, ep) — sp(un; Ny, en) — th(un; n,, €n)

+ Sh(uh; u, €h> - CLh("‘J7 n,w, eh) + (lh(w, u,w, €h>

where we used V - u = 0. Some of the right hand side terms can be bounded as
follows:

1 1
(O, en) < [|0mlle@llenllz@ < §||3t"7u||%2(9) + §||eh||%2(9)
Ek(Vn,, Ver) < VEE[Vn, |2 H|€h|HLPSa

(1,7 - €1) (Zm‘“<m Nl lealllzes

1
s (i en) < (3 b IV ) llealllzps,

1

(s, e1) < WMdHVmHiz(m)QHIehH\LPs

(
(2
snn; 0, e1) (Zwmm Ikae(T) ) llenlrs
(
(

onfoo, 0ven) < (D enshons s Wan) llenllers

1
ap(w, n,w, ep) < ZochwM| 17 11Z2 0s )2H|eh|||LPS-
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This implies

Ollenlliz +|||eh||!ips

< —HatnuHLz o153 Heh”L2 ) c(uns up, en) — c(u;u, ep)

1
+|||ethps[¢Ek||wu||m (ZTM|uM|2HVnu||%2<M))2
1
(i 9m ) (me(m — ) Imlizn)
M
3 3
(3 e Pllrar (Ve aan) ) + (D2 aarlwons PImalea)
M M
%
+ (D anrlwouPllea @)z ) |
M

thus via Young’s inequality

J0llenlz + (1= 20)llenllEs
< 10m ey + 5 lenlagey + [eluns s en) = (s w, )]
o (B s+ 200) [V, (15)
y d 2
—i—mm(Ek >||77p||L2 + mae|une [P || s (V )l 720a)

+ anrwu P 1Ml 72 + carlwnr*llrar (W) 720 |-
Lemma 7.1 in [1] yields for the convective terms:
(c(u;u, ep) — c(up; up, ey))/Ro

c Ly b (g Blliman ) e sl s+ cllenl

= Ue - h2, Bk MNullz2(ar) MulllLps rillLPS
C h?

+ [<|U|W1v°°(9) + <6h2 + — max 7—M> |u|124,1,00(9)] lenl 72

(4.6)

assuming vy, > Chyy.
We summarize (4.5)-(4.6) and set e = . Together with Assumption 2.5 we
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obtain
Orllenlzz) + lllenlllZps

< [1 + 2RO|’U,|W1,oo(Q) + ROCh|u|‘2/V1,oo(Q)i| ||€h||%2(9) + ||8mu||%2(9)
+§j[ (B% -+ 7aslune]? + 1a0d) [ 2o

+ 2Lang |war |l (W) |72 ar)

o (o (1 B0 ) ot )

d
2t ear( )l + 20 (5 |

Application of the Gronwall Lemma for HehH%Q(m gives (4.3). Note that the
initial error |le;(0)||z2(q) vanishes for w;(0) = jyuo. O

Remark: The independence of the Gronwall constant Ci(w) on the Reynolds
number Req heavily relies on the lower bound ~,; > Ch of the grad-div term
parameter, together with the assumption w € [L>(0, T; W>°(Q)]¢. The analysis
uses at some places ideas of [9]. For Ro = 0 we are in the Stokes case and the
Gronwall constant is independent of the Reynolds number no matter how ~ is
chosen.

COROLLARY 4.1: Let Assumption 2.1-2.5 be valid and assume for the reqularity
of the smooth solutions uw € [L>=(0,T; Wh>(Q))]?, p € L*(0,T;Q) and dyu €
[L%(0,T; L*(Q))]?. Then estimate (4.3) implies strong velocity convergence of the
LPS-method in [L*°(0,T; L*(Q)) N L*(0, T; V)%

Proof: For w € L*(0,T;V) and p € L?(0,T;Q), a density argument gives

(Ek + Tar|up | +7Md)||vnu||L2 y =0, ha =0,

21 Zoe (ary P

max (Ro; Ro o

WMNEWMOTWMQM%QfW%Q

d
min (55 == ) Il = 0. =0,
10l Baan) = 0, has =0,

TM|’U,M| ”I{M(VU)HLQ —>0 hy — 0,
anlwn*||kar(w) 720y = 0, har — 0.
Under the assumption of w € [L°°(0,T; W>(Q2))]¢ the exponent Cg(u) of the

Gronwall factor remains uniformly bounded for A — 0. This fact and (4.3) imply
strong convergence for w in [L>(0,T; L?(2)) N L*(0,T; V)]<. O
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COROLLARY 4.2: Let Assumption 2.1-2.5 be valid and assume a smooth solution
of the time-dependent Navier-Stokes-problem according to

u € [L(0,T; [Wh(Q)) N L0, T; [WH12(Q))],
O € [L*(0, T; WH2(Q)]4, p € L*(0,T; W5%(Q)).

Set up(0) = jyug and ip, = 0. Then we obtain for 0 < t < T the semidiscrete
a-priori estimate for the approximation ey, = wy, — j,u of the LPS-method (2.11):

t
(A / len(P)I2ps dr

. d
< CZth/ Ca(u)(t—) |:m11’1 (E_]{} )’p( )’W’“ 2(wpr)

Ro
+ (Ek+ Ro+ Ekh?\/,HuHLoo(M) 7o e ? (4.7)
+ dym + OKMH‘-‘JHLOo )|u(T)|Wk+1‘2(WM)

2(s—k
+ (Tarlua? + aarh, ||wHLoo an) T T () By
0Tz | A7
where s € {0,--- ,k}.

Proof: Interpolation results in Vd“’ X @y, according to Assumption 2.3 provide

D Bk +7arlun* 4+ dyan) [ V0, ()72 +me )Hﬂp( Mzzn
M

Ro -
+ 3 {0+ Tl +aMHwH%m<M)) 1707
M

Ro
< O;hﬁ(EHRw o

sl + Tt
+ dya + OKMH"‘JH%OO )h?\4> |u(T)‘12/Vk+1v2(wM)
1
# 0D i min (2 I s

and

10:m, 120y < CZ h 1Okl )
M
ol Pl sar (V) [y < O mrluad PR35 ul?
L2(M) = MM ToM T IW 412 (wpy) 0
o || 2 2 <Cf h2 2 h2s 2
M ‘-'JHLOO(M)”"@M(U)”L?(M) > ZQM M||‘-U||LOO(M) M|U|WS+1’2(UJM)'

M

Using Assumption 2.5, this concludes the proof. a
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Remark: The error estimate (4.7) does not blow up if

Ro
SRl < C (18)

In dimensional form this condition corresponds to

Re2, B h?\/[H’u’”ZOO(M) v <C (4.9)
Re B V2 Lrerref - ’

which gives a (mild) restriction on the local mesh width hy,. Thus we obtain
a method of order k in the sense of (4.2) provided that Rey, < C/vVRe. In
particular, there is no restriction if Ro = 0. O

Now we are in the position to derive bounds of the stabilization parameters.
By formula (4.7) a possible choice for the set of stabilization parameters (1),
(var)ar and (apr)r is given by

2(k—s)
0 S TM(’U,M) S (Ek + RO)TOM—Q,
|wa|

p2k=s=1) 4.10
0 < apy(wy) < (Ro+ Ek’)aoM—Q, (4.10)

|war]

(Ek+ h)yo < vu < (Ek + Ro)vo

with s € {0,1,...,k} and tuning constants 79, v9, g = O(1). Let us remember

the choice T/|bys|> < ChE* and  ~ 1 in [7], Table 1, for the Oseen problem.

A large range 0 < 7y < C(Ek + Ro)hi/([k_s)/|uM|2 is allowed, in particular
v = 0, thus showing a certain robustness of the grad-div stabilized Galerkin
FEM with inf-sup stable interpolation. Nevertheless, the numerical experiments
in Section 6 will show that the choice s = k is appropriate (at least for boundary
layer flows).

The approach of this subsection is applicable to almost all LPS-variants. We
summarize possible variants of the triples V',/Qp /Dy with t € {0,... k — 1}:

e One-level methods:
Pr/Pe-1/Pi, Qu/Qi1/Qi, Py /P_i—1y/Pr, Qi/P_(r—1)/ P

e Two-level methods:
Pr/Pr1/Pry Qi/Qu-1/Qt, P /P_oo1y/Pr, Qu/P_o—1)/Ps

Remark: A-priori error estimate of the pressure can be derived following the lines
in [14]. Unfortunately, one obtains an error reduction as a result of non-optimal
estimates of dyey,, see also [9].
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4.2. Methods of Order k with Compatibility Condition

The restriction £2 hllullZoay < C in (4.8) stems from the estimate of the
advective term 1n the analysis of Theorem 4.1. An improvement relies on the
following

ASSUMPTION 4.2: Let Y, (M) = {vp|pm: vn € Yag, v, =0 0on Q\ M} and

36, > 0: inf sup (Vn, Wi
wn€DM v, evy (M) |Vl L2an |wn || L2 an)

> B, (4.11)

LEMMA 4.1: Let Assumption 4.2 be valid. Then there exists an interpolation
operator i:' V. — Vy s.t. for 1 <[ <k+1

(v —iv,wy) =0 Ywy, € D, Vv e V

o — ]l 2y + harlo = ivlwsan < Chlyl[vllwiae,,) Yo € V0 Q)1
(4.12)

Proof: See Matthies et al. [10]. O

Condition (4.11) has two implications: At first, a careful selection of the
discrete spaces V', and D), is required. Secondly, the interpolation operator
1:' V. — V} does not act in general in V;lf”. As a consequence one has to
modify the analysis of Theorem 4.1. In particular, a critical mixed term has to
be handled. For discontinuous pressure space ()5, we have to include the pressure
jump term ip.

THEOREM 4.3: Let Assumption 2.1-4.2 be valid and assume for the regularity of
the smooth solutions w € [L*°(0,T; W1H>=(Q))]4. Moreover, consider a continuous
or discontinuous discrete pressure space Qn = Py_y or Q = P_,_1). Then we
obtain for 0 <t < T the error estimate

t
A / EW) |2 ps dr

t
<oy e [k s+ ) |97

Ro Ro d
+ (h2 +204 anou?) 17 g + i (=) )

+ Tarlwar*llwar (V) (7)1 L2 ary + arlwas [l (u )I!L2(M>

am Dy + 3 (—Hm nEH%m+¢E||[npmim)]df

ECoM

(4.13)
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with (n,,ny) = (w —iw,p — j,p) and Gronwall constant

Cg(u) =1+ CRO‘U|LOO(O7T;W1,OO(Q)) + CRo hHuH%oo(O,T;Wl,oo(Q))

4.14
+ CRo max H\/TMUhH%w(o,T;WMO(M)) -

where h := max,s hyy.

Proof: We modify the proof of Theorem 4.1. Eventually, the pressure jump
stabilization term (-, -) is included, in particular in the expression ||| - |||zps-
The first estimate (4.5) has to be modified as follows:

1
Oillenllzz@ + [ Enlllzps
= _<at"7u: eh) - Ek(vnua Veh) - (2"‘) X My eh) + (npa % eh) - (rha V- Tlu)

+ c(up; up, er) — c(u;w, en) — sp(wp; Ny, en) — in(Mp, 7)) — th(un; My, en)

+ Sh(uh; u, eh) - a’h(wJ n,w, eh) + ah(waua w, eh)‘

Note that the (critical) mixed term (1, V - 1,,) does not vanish in general. Most
of the right hand side terms can be bounded as in the proof of Theorem 4.1. The
modifications due to Assumption 4.2 are as follows.

Lemma 7.2 in [1] provides a refined estimate of the advective error term:

(c(u;u, ep) — c(up; up, e))/Ro

1 1 1
< oo > (— + g Imllizon + elllmllips + delllenl 7 ps
M

— 2¢ T
M

1 h?
2 2 2
+ C’[|u|W1,oo(Q) + max <(eh + ey + - max 7M)|'u,|Wl,o<,(]\4)> ] lenllz2 (-

again assuming vy > Chyy.
For the critical mixed error term, integration by parts gives

—(rn, Vom,) = (Vrwom,) = > (Irale,m, - ne)e (4.15)

Ee&y

Assume that Vry|y € [Py_o(M)]? which is possible for Q, = Py_; or Q) =
P_(x—1). Then, the orthogonality condition of Lemma 4.1 is applicable, resulting
in (Vrp,m,) = 0. In case of continuous discrete pressure @, = Pr_1, we have
[rn]e = 0 and thus (r,,V - n,) = 0. For discontinuous discrete pressure @, =
P_ (1), we take advantage of the stabilization term jj,:

1

1 =
(Vrioma) = > (o me)e < (32 Sl nellia ) llen rollles.
E

Ee&y,
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Moreover, we have
sp(un; A, A) + th(up; A, A) + (A, A)
<D (rulun + dn) V0l Fen + ) Sell ]Iz
M E

Summarizing all steps, we obtain the modified estimate

Oillenl3za) + B ps
< [1+ 2fuuln o) + O+ maxmag) [l )| lel3a) + 100320y

+CZ[Ek+TM|uM| + 9 d) V02 an) + nrllelToe a1 (w) 220

Ro Ro 9
+ w2, +— +aM||w||L°°(M 7l 22(0r)
™
d 1
rrfusss Pllar(Vae) [Faqary + min (05 = Yl

1
O3 |nell + ol |-

: (4.16)

Application of the Gronwall Lemma for ||eh||%2(m gives (4.3). Note that the
initial error ||e;(0)|12(q) vanishes for u,(0) = j,uo. O

Finally, we have the following a-priori error estimate.

COROLLARY 4.3: Let the assumptions of Theorem 4.3 be valid. Then we obtain
t
leslfomyasan + | B s dr

<oy [ e [t

1
n (mm (g5 2) * 1) o s (1.17)

+ (Ro + Bk + 7']\4]11,1\4|2 + dyur
2

hy;,  he
+R0— + —¢ + O./Mh HwHLoo ) ‘u(’r)’%/karl,Q(wlw)
™

2(s—k
+ (rarluad? + anrh w3 un) B () e | 47

From [7, 10] we obtain the following variants for V', /@ /Dy for LPS-methods
of order k with the crucial inf-sup condition (4.11) in Assumption 4.2:

e One-level methods:
Py /Pr_1/Pe-1, PY/P_51)/Pro1, Qi/P_h—1)/Pr_1
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e Two-level methods:
Pr/Pr1/Pr1, Qu/Qr1/Pr—1, PL/P_—1)/Pro1, Qu/P_(e—1)/Pr-1 ,
thus giving the restriction s = k for the projection space.

Remark: Regarding the stabilization parameters, we obtain from formula (4.17)
that a method of order k results from

moh3; < Tar(uar) < (Ro+ E/{:)|UT—]\(/)[|2 Ekvy < vy < (Ek+ Ro)v
4.18)
ao(Ro + Ek & (
OSQM(WM)_W doh < dp < —
M Lo (M) ™

with tuning constants 7o, Yo, @, po = O(1). The remarks in Subsec. 4.2 on the
choice of v,; remain valid. For discontinuous pressure spaces (J;, we may set
¢o = O(1), whereas ¢y = 0 for continuous pressure spaces ;. Note that in
(4.18) 19 and 7y may still depend on wu,;. Moreover, a deterioration of the
Gronwall constant Cg(w) is not possible since, according to Assumption 2.5,
we set Ty (uy) = 0 if up, = 0.

4.3. Methods of order £ + % with Compatibility Condition

The analysis of Subsec. 4.2 suggests to search for methods of order £ + % in
the interesting case Ek < Ch. As in [7] we will focus on one-level methods, i.e.
My =T

The definition of the LPS-scheme is the same as in Subsec. 4.2 with the
exception of discrete pressure spaces @y, of order k. From [7] we have the following
variants for V;,/Qy /Dy for LPS-methods with assumption Assumption 2.5:

e One-level methods:
Pl /Py /Py (k> 1), PL/P_y /Py (k>d), QF/P_y/Prr (k> 2).

For brevity we give here only the final result. Please note that the result of
Theorem 4.3 remains valid with the exception that the factor multiplying the
seminorm |U(T)|%/V,€+172(MM) has to be replaced by Ek + has + Tar|unr|® + dya +

h2
RoM + Z—g + anhi w7 (ary:
COROLLARY 4.4: Let Assumption 2.1-4.2 be valid and assume for the requ-

larity of the smooth solutions w € [L>(0,T;W1(Q))]%. Moreover, consider
continuous or discontinuous discrete pressure Qp = P or Qn, = P_x. Then, for
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0<t<T, we obtain the error estimate

t
(A / Ew(M)|ps dr

1
< OZth/ Ca(u)(t—7) |:hMm1n(Ek,

+ hM|8t (T)’Wk+1,2(wM)

+ (Ek + har + Tarlun|* + dyar
2

h2,  hg
—I—ROE + s + anhiy |l Fe M)) lu(r )IwHLQ(wM)] dr

with the same Gronwall constant as in Theorem 4.5.

1
)|p(T)|12/V’“2(wM)

(4.19)

Remark: For the stabilization parameters (4.19) implies a modified design

. h h2
Ty (Uar) = 7o min <‘U—M|2;R Ek> v = Yohu
u (4.20)
0 < anm(wy) < PE = 0o

= harllwl ey
with tuning constants ag, 79,70 = O(1). For discontinuous pressure spaces @,
we set again ¢g = O(1), whereas ¢y = 0 for continuous pressure spaces Q. In
case of Ek < Ch, this gives a method of order k + 5 in the sense of [10].

From formula (4.19) in Subsec. 4.3 we obtain via equilibration the condition

1 1
(Ek+ 7M)||u||12/vk+1,2( ~ hj; min (Ek )Hp”W’“ Hwm) (4.21)

In principle, the situation is as stated in Subsec. 4.1, but is crucially relaxed due
to the factor h% on the right hand side. This motivates the choice (4.20).

5. Time Discretization

In order to fully discretize our model we use splitting method called rotational
pressure-correction projection. This approach has been analyzed by Guermond
and Shen in [2] is based on the backward differentiation formula of second order
(BDF2). We define the operator D, to abbreviate the discrete time derivative by

n n—1 n—2
Sup, — duy, + Uy,

2At

DtuZt = (51)

The fully discretized scheme then reads
(31”12lt —du} !t +uf

IAL ’Uh) + Ek(VﬁZta V’Uh)
+ b3 [((’H’Zt V), vn) — (uy, - V)op, H’Zt)} + 2(w X Uy, vy) (5.2)

+ ah(wn7 ’aZU wna Uh) + Sh(aZt; :"V"Ztﬂ Uh) + th(ﬁZt; ’E’ZU vh)

= (fnavh) - (sz;la vh)
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up, — 3uy, n _
( o+ V7, Vg ) =0

Pht = Oy —i—pZ;l - Wp(Ekv : ﬁZt>

(5.3)

By eliminating the (weakly) solenoidal field wy, in (5.2) we arrive at the following
scheme that is used in the implementation

~n ~n Ro ~n ~n ~n ~n
(Dyttyyy, vi) + Ek(Vuy,, Vo) + b [((uht -V, v,) — ((wy, - Vv, uht)]

+2(w X upy,vp) + ap(W", up,, W V)

+ S (Wpe; Upg, V) + th(Whys Wiy, V1)
T T N
= (fn,’l)h) + (—szt - gv ht ! + gv ht 2,’Uh) .
(5.4)

5.1. Strategy and the Auxiliary Problem

Since we already have an estimate for the error induced by the spatial dis-
cretization we want to consider the error that appears when discretizing the
spatial approximation in time. By the triangle inequality the total error is then
bounded as

U =Up|| < U = Ul + [Un — Uil (5.5)

Since the convective term normally does not introduce any severe problems
(according to Guermond) in the time discretization, we restrict the analysis at
this point to the Stokes case, i.e. Ro = 0 and 7, = 0. Additionally, we assume
that w is constant with respect to time. For the Navier-Stokes case in inertial
frames of references we refer to [15].

The fully discretized quantities uy,, uy,, pj, solve the problem

~n n—1 n—2
(3uht —dup, " +uy;

,’Uh) + Ek(Vuy,, Vo) + 2(w X uy,, vp)

2At (5.6)
+ an(W", Wy, W, v1) + t(Ugy Wi v1) = (F"01) — (V' on)
3uht 3uzt ~
Vou,, V =0
( oAr VO Vi (5.7)
Pht = Oht —i—pZ;l — mp(EEV - upy,)
5.2. Initialization of the Auxiliary Problem
For initializing the algorithm we use a BDF1-scheme defined as follows
M vy | + Ek(Va,,, Vu,) 4 2(w' x @, vy)
At y Uh ht» h hts Yh (58)

+ an(W', Wy, w', vy) + (U, v1) = (—VpR(0) + £, vp)
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1 _ ~1
(W’ th) + (V(pre = pr(0)), Van) = 0. (5.9)

v = up(ty) — Uy, and e} =
pu(t1) — p}, we can state the estimates for the initial errors.

Using the abbreviations el = wy(t,) — u},, €,

LEMMA 5.1: The initial error due to time discretization can be bounded as

1115 + 1€ulls + IVELIS + IVe,lls < C(At)!

5.10
Vel + VIR < (a0 10
Proof: The error equation corresponding to (5.8) reads:
~1
(Z—t, vh> + ER(VE', V) + 1 (€', up) + 2(w' x €., v5)
+ ah("‘)l’ EzIU wla vh) + (V(ph(tl) - ph(o))a ’Uh) (5'11)

_ (Uh(tl) — uy(0)

A7 - 3tuh(t1),’vh) =: (R, vy)

Testing this equation with €., yields
€Lllf + ERA[Ve,[§ +vALV - €[5 + At Y (anllma(w' x €)]5.4r)
M

< Atmin{([[(V(pa(0) = pa(t1))llo + [| Rallo) 1€y [lo,

(Ir(0) = pr(t)llo + |1 Rall-1) I Vey[lo}
< C(At)? min[&,]lo, Ve, [lo}
(5.12)

and hence |[€, — €"]lo = ||€L]lo < C(At)?. Testing (5.11) with A€, gives
IVeLlI§ + BRALIAC,|§ + ALV - 'lo + At Y (aullwhy x Ve, [5a)
M

< Atmin{([[(A(pa(0) = pa(t))llo + [V Rillo) IV, [lo,

(I(V (P (0) = pat))llo + |1 Rallo) [ A€, llo}
< C(At)* min{[|Ve, [lo, [|A&,]lo}
(5.13)

and this provides us with ||[Ve,|lo < C(At)?, ||Ae,|lo < CAL.
Next we consider the error equation due to the projection step (5.9)

(ei - EU,V%) (Vn(t) — ph). Van) = (V(pn(ts) — pu(0)). V). (5.14)
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Choosing ¢, = pn(t1) — p;, we arrive at

AtV (pr(t1) = pre)lls < ([€ullo + AtV (pr(0) — pa(ta)) o)V (pr(t1) — p}Etngos)

where we used that e' is weakly solenoidal. Hence ||V (pn(t1) — pii)llo < CAt
holds. Testing (5.14) with el gives

lewlls < ([€ullo + ALV (pr(0) — pa(t))llo)lleylo (5.16)
and finally ||el|lo < C(At)% Testing (5.14) with —Ae} gives
IVeullo < (IVeyllo + AtI(A(pa(0) = pati) o) < C(AL)? (5.17)

Next, we need an estimate for éi. Applying the same technique for n = 2 we
get

~2 ~1
(%, ) + EE(V(E — &), Vop) + an(w?, & — 8- w?,vp)
—+ th(é2 — El,vh) =+ 2((.02 X (Ei — Ei),vh)
3el — 3!
=R*+ V(pit _ph(t2>7'vh) - Ek(V(e —e ) Vvh) (Wﬂ%)
ei - 62 2 ~2  ~1 2 1 2 ~1
( IAE 7Uh> +ah(w 1€y T €y, W 7vh) +2((w —w ) X euuvh)
0~ el —el 3
= R — BK(V(2} — &), Vo) + (55 o) + (5(V (ks — 1), on)
+ V(p}n - ph(tZ)vvh) + ah(WQ,EZ - EiaWQ, Uh) + 2((‘*’1 - WQ) X Ei, Uh)
el — e 5 3
= R’ — Ek(V(e, —e,),Vuy) + ( SA7 7”h)+(v(§Pf1n—5192,:—]%(752)),%)

+ ap(w?, e — €l w? vy) 4+ 2((w! — w?) x €., vp)

= B~ BK(V(EL ~ ), Vo) + (%% 0) + (VO (b — (1), w0)
F(VGl0) = Sonlto) = pulta)), 1) + an(w?, & — By 0)

+2((w! — w?) x €., v)
< CAtmin{|[vllo, [Vonllo}
= &, —ello < C(AY)”  Bkle; —e,ll < C(At)
(5.18)

Similarly as above we derive for the pressure error

AtV (pr(t2) = pi)lle < (€3]l + At (V (s — paE) o) IV (pa(t2) = pio) o
< C(AY?|V(pa(tz) — pie)llo

and therefore ||VeZ|| < C(At). O
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5.3. Velocity Projection Error

For the following estimates we define the errors

e, = up(t,) — up, EZ = up(tn) — aZt

* = pr(tnr) — Dl ey = Du(tn) — Py

and the increment operator

25

Now, we can proof a first result for the error between the error for the auxiliary

velocity and its projection:

LEMMA 5.2: For all1 < m < N the difference between the velocity errors can

be bounded as

e — €'l < C(AL)*.

Proof: The error equation due to the diffusion step (5.6) reads

OAL ,’Uh> —FEk(VEZ,VUh) —i—2(w” X EZ,'Uh)

+ a/h(wnu EZ; wna 'Uh) + th(EZ7 ’Uh) = (Rn7 ’Uh) - (anilu Uh>~

<3EZ —4ent +en?

We note the identities

2(w" x el vp) — 2w x eV vy)
= 2(6,w" x €171 vp) 4 2(w" X 5el, vp),

—ap(W", ), W o) +ap (WL ar T W vy)
=ap(w" €, w" vy,) — ah(w”’l,'ézfl,w”’l,vh)

— ap(w", up(tn), w", vp) + ap (W™

and
ap(w™, e’ w" vp) — ap(w" e W vy)
= ap(wW", 68, W™, vp) + ap(W", €N Ww", vy
—ap(w e W vy)
= ap(W", 68, W™ vp) + ap(fw™, € W vy)
+ap(w e W o) —ap(wh e W o)
= ap(W", 68, W™ vp) + ap(fw™, el W vy)

n—1 =n—1 n
+ ah(w y €y 5t“) 7vh)

(5.19)

(5.20)

(5.21)

(5.22)
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and get therefore

—ap(wW", up,, W V) + ap (W, ﬁzt_l, W' vy)

= ap(W", e, w", vy) + ah(étw”,éz_l, w", vy)
+ ah(wnfl,ﬁézfl, dw™, vy) (5.23)
—ap(W", dpup(tn), w", v5) — ap (0™, up(t,—1),w", vy)

n—1

—ap(W" T up(tn-1), w", vy).

From the fact that the increment operator is linear we get
30.e, — 46,em ! + 5,en
(e
+2(w" x 0er, vp) + ap(wW”, dre,, W™ V)
+(V -4,V -vy)
= (6, R",vp,) — (V60" 1 vp) + apn(w", Seun(t,), w™, vy)

+ ap (™, up(ty_1), w", vp) + ap(W" T up(t, 1), Gw"™, vy,)

s ’Uh) + Ek(V(;tEZ, V’Uh)

+2(0w™ x €' ) 4 an(Gw™, € W vp) + an(wTh €N W, vy).

(5.24)

Now, we can do the same for the error in the projection step (5.7) and get

3d.ell — 30.€e. B
(ﬁTtteu + Vel — Vot — EkVr,V - 6,0, th) =0. (5.25)

Next we test the incremental error equation (5.24) with 4Atdze;, to arrive at
(2(3(51}52 — 4(5156271 + 5t6272), (51552) -+ 4AtEk\|V5tEu||(2)
+AAY||V - e |§ +4AE Y anlra(w™ x 6,€)13
M

= AAt((6:p}, — V"1 Sen) + an(w™, Spup(t,), w™, 5iel)
+ an (60", wp (ty_1),w", 6:€l) + ap(w™ ' up(t, 1), 6", 5iel)
+2(6w" x €)1, 6e) + ap(dw € w", 5Er)
+ ap (W™ EN S, 5el))

= 4AH((0epy, — V"1 6:80) + ap(w™, Spup(t,), w™, 5iel))

(5.26)

assuming that w is constant with respect to time. The first term is then splitted
according to

(2(36,8" — d5,em ™t + 5,e72),5,8") = I + I + I
Iy := 3|6i&,|[5 + 3(|:e;; — dreyll5 — 3llorenl[s

I, = 2(6tel — dtel’, 36l — 46,el ! + 5,el?)

Iy .= ||0renl[5 + [126,€;; — dren™ (15 + lloweer |13

— llo:e™ 15 — l120ie5" — drey [l
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The terms I; and I3 are treated exactly as in [2] and also the second term
vanishes

3 ~
—IQ ( (5,5’@[1’”_1 — 5telT7L + EkV’]Tpv . (St’UIZt), 3&582 — 45t€;l_1 + 51562_2)

ANt
— (60" = Syel + Ekm,V - Suuy,), V - (36,e — 40l + b,el%)) =0

due to the fact that w, and wuy,; are weakly divergence-free. The incremental
projection error equation (5.25) may be rewritten as

30.el o
( 22;‘ + Ve, — EEN T,V - uy,, th)
(5.27)

30,e . e
(QtAt + Vot Ek:prV-uhtl,th).

Testing both sides with themselves and multiplying with @ yields

At
3,en)z + HAY°

IVde]} — EkVm,V - a3

. At
_ 3522 + i

IV " — EkVT,V -, |2
+ 4At(5el, vatw '~ BkVT,V -y h).

For the mixed term we again use that w;, is solenoidal

— 4N, &), EkV T,V - a); ) = —4AH(m,V - §el, BkV - (u); ' — un(tn1)))
= 4At(58!, EkV T,V - el )

— 2BkA(||m,V - & Y2 = ||m,V - €72 + ||,V - 6 12)
<2BEAH(||m,V - &, 5 = ImpV - enlls + [V o.e[5).

Similarly we get

IVo"t — BEVm,V -y, I3

= |Véen™ — EkVm,V - ap, '+ Vpu(ta) |3

< (c(At)? + || Vo — EkVT,V - apy o)’

< (A + 2¢(AL)?||Ver ™ — EkV T,V - ap, "o
+||Voer™ — EkV,V - aj; ' |lo)®

< (A + (A ((AL? + || Véep™! — EkVT,V - apy H3)
+ (| Voer™t — EkVT,V a4y, o)?

< (At + (1 + cAY)| Vel — ERVm,Y - agy 3.
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Combining all the estimates gives

3/|6.e,, 15 + 3lloier, — oie, |15 — 3llaren][s
+ [|0rei |l + 1126cey; — dren ™15 + [[0mer 15 — llore™ |5 — [[20:e5 " — drel 2[5
+ANLEE||VS,E" 2 + 4AtY ||V - 6,872 + 4Atal|wys x 6,872

4(At)? ~n
+ el + U2 Vo — BRI -

< 4AL(6,R", 5:€l)) + ||30.el |12 + 4Atay (w", Siup(ty,), w", 6,€L)
4(At)? - e
+ %(C(At)3 + (1 + cAt)[| Ve, t_ EENVT,V - uy, 1||(2))

+2BKAH(|m,V - &y S~ ImV - €55 + I Voellg) + 4At(.ey, Vo)

and using At||d.el||2 < 2At|5.e7 |2 + 2||6:en — den||2 for At < 1 we get
16cel; — deells + l1oeer g + 120cer — deel (15 + I0ueer o + 2ALER | Varey |
AT 52+ 200 S (aprlar(wn x 5 Bar) + 2Bk, T - &2
M
4(At)?

3
< 2086 R"(I§ + 24t e 1§+ 2A¢ Y (anrlmar(w" x Seun(ta))II5 )
M

+ IVoey — EkVT,V - s

+ |6, €2 + (|26en 7 — Sen 2|2 + 2BRAL| 7,V - el |2

4(At)2 3 n—1 ~n—1(12
+ T(C(At) + (1 + cAt)|| Ve, — EEVT,V -, |g).
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Summing over n yields

5cex 115 + l[20rey — dre ™[5
(At) IV6,eN — EkVT,V -T2 4+ 2EkAL |7,V - ]2+
t€p D Rt 110 D uw 110
N
> (lloie; — s 15 + [1mer 1§ + 2ALEE|| Vo, || + 4Aty(|V - i I3
n=3

- 4Atz (anrllrn(w x 6tEZ)|‘g,M))
M

< |l6eel||g + [125.€% — Sel |3

At N -
A(At)? IVoies — EEN T,V - Uy, || + 2EkA| 7,V - €13+
N
Z(zAtH@R"H% + 24t 6el |
n=3
4(At)? e
+ %(C(At)‘g + cAt||Voen ™ — EkV,V -, [[3)

+2Atz (anllrar (@™ x S (ta)) 1[5 40))-

EkVT,V- a3+

Using the discrete Gronwall lemma for ||6;e!||2
2EkAt|| 7,V - €, |2 we arrive at

4(At)? -
(&) IVéel — EkVm,V - a3

5cez 1[5 + l[20rey — dren ™" [I5 +
+ 2EkAL ||,V - €l ||2
N
+ ) (el — dieslls + lIsueel 1§ + 2ALEE|| Vo€ |[;

FAALY||V - 6,872 + 4Atap (w, 68", w, 6,"))
(At)

< ([lores ]I + [120:€5 — dreq|l5 + Vo2 — EEVm,V -ap|2 (5.28)

+ 2EkAt|7,V - €|l2
+ i(zmuatmug + ¢(At)°
n=3
+2Atz anr||kar (W™ X () 1I60r) ) exp(T/ (1 = At))
< O(A) + C(At) 2p2T2 < O(AL)*

using the initial errors and

QAtZ anr|[rar (W™ X dpun(t ))”0 M) < C(At) ShE,
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as well as h*t1 < At.

The error increment equation (5.25) states

~ 9At .
lei = €illo = ==V (e = oupn(tira) = EkmyV - i) o

2At
< —(HV((Ste + Ekm,V - St |lo + [10:pn (trs1) o)

< C(At) .

5.4. Velocity Error Estimate

Next we want to bound ||e]||. Therefore we eliminate e? in (5.19) to give

3e! —4el el ?
2At
+an(w, €y, w,vp) +7(V - €,V -vy) — (R", v)

Y u’

7o, 5 o, 1.
= (V(=palta) + 3P3, e R e

3 3
A - 1 o
S BkmY - — Bk -, %), v)

= (Vcn’ 'Uh)

This allows us to derive the desired estimate:

h) + Ek(VEZ, VUh) + 2((.!} X EZa Uh)

(5.29)

LEMMA 5.3: The total velocity converges according to

[€ull?207:22(0) Atz [R5 < c(An)™. (5.30)

Proof: We test equation (5.29) with the inverse Stokes operator applied to 4Ate!!

(2(3e" —4e" ' + €' ?), Se") + AALEk(VeE!, VSe!) + 8At(w x &, Se’)
+ 4Atay(w, €, w, Se;) + 4Aty(V - e,V - Se,,)

Y u’

— 4AH(R", S€) + 4AH(V(", Se) = 4At(R” Sen).

due to Se!' € V" For the discrete time derivative we notice that from the
splitting we used before only I3 remains.
(2(3e} — 4y + e 7). 5e€)) = el + [12eh — el ™2 + [loner)

— lle" I — ll2en™" — el
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Using the definition of the semi-norm induced by the inverse Stokes operator
we get
&2 + 28 — el 2 + |0ner|? + 4ALtEk(VeE!, VSer)
+ 8At(w x e, Se;) + 4Atay(w, €, w, Se,, ) + 4Aty(V -e,,V - Se;) (5.31)

— KR, S8 + [ |28
The consistency error can be bounded as

. At .
AR, SE)) <A R + AtER| S€ |7

An At o .
< ARV, + At

Using (A4) with ¢ = 2 (24 g + ("2bmi) 4 23 oy [|) 7, the diffusive

term, the grad-div stabilization, the Coriolis term and the Coriolis stabilization
can be estimated by

AALEK(VE", VSE") + 4Aty(V - &',V - S&7)
+ 4Atap(w, €, w, Se,) + 8At(w x Se))

) u?

> 2ALEL; — cAtfEl - el

. l maXM{\/ﬁ} 2 o . .
where ¢ = 2(2+ gz + (=75 * 7 ) lwwml) - Combining these estimates

we arrive at
en)? + [2e] — €)' 2 + [Suen |2 + Atller ]

A ~n— ~N— ~n n
4E—kIIR"HZ_1+\6u U2 12el - el + eAte — enls

that yields summed up
N
€0 |2+ 28] — &) '+ Z(Iétt'éulf + Atllens)
< [e.f? + |2e; — e, + Z 4 HR”H2 +cAtle] — eylf) < c(At)".
In particular we derive

||Eu||l22(0,T;L2 Atz [enlls < c(an). (5.32)



D. Arndt and G. Lube: Navier-Stokes in Rotating Frames 32

5.5. Error Estimate for the Discrete Time Derivative

In the previous estimates we could have derived that the velocity in the LPS
converges linearly. In order improve this result it is important to get proper
bound on the discrete time derivative.

LEMMA 5.4: For all 1 < m < N the error of the discrete time derivative can be
bounded according to

1Dl 020y < CO1 (5.33)

Proof: We start again from the error equation (5.31) for the diffusive step in
which the error uy, is eliminated. This time we apply the increment operator
and test with 4Atd,e; . This gives

6,72 + (26,8 — 26,8712 + |Suer)? + 4ALEK(V e, VSoer)
+ 8At(w x e, 0,5€,) + 4Atap(w, €, w, 6;5€;,)
+ 4Nty (V - 6,8,V - S6,e!)

= 4AL(5,R", S6,€) + |6,80 12 + |20,er " — 26,87

assuming w does not depend on time.
Using the same tricks as above we arrive at

|6:€|2 + [26,€) — 26,e, |2 + |Swen |2 + At|Ser I3
< AAL||6,RM|? | + |68 12 + 26,80 — 26,80 2|2 + cAt]|6iel — bel||2

that yields summed up

N
6:€,) |2 + [250€,, — 26,€, |2 + Z(|5tttgu|f + Atl|5.e][5)

< |0:&, 2 + [2:8, 25t5u|2+z4 H(StRnHQ +cAt|o€; — dief[5)

< c(At).

In particular we derive

16¢€ulliz 072 (02 Atz 16:€, 15 < c(At)® (5.34)
and due to Dse; = 3(5t %(5@271 the discrete time derivative can be bounded
according to

N
IDs€ullB 07120y < ALY (Blldies |5+ ll6ien " 15) < e(At). (5.35)
=0

O
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5.6. Final Estimates for Velocity and Pressure

Now, we proved almost everything we wanted. The only things that are left
are the estimated in the H!-Seminorm for the velocity and the pressure esti-
mates. These of course rely heavily on the inf-sup stability (2.3) of the used
ansatz spaces. In particular this is equivalent to the surjectivity of the discrete
divergence operator.

LEMMA 5.5: For all 1 < m < N the velocity error in the LPS-norm and the
pressure error in the L*(Q)-norm converge according to

le Zps + llep'llo < C(AL). (5.36)

Proof: The error equations for the diffusive and for the projective step are
equivalent to the inhomogeneous Stokes problem

(Vey — EkVT,V -€;,v,) + Ek(Ve,, Vo) 4+ 2(w x €,,vp)

+ ah(w7 eu7 w, Uh) + V(V ’ 627 V- vh)

3e” —4em !t en?

= (R”,'vh) — ( u 2uAt L ,'Uh> ,’Uh> = (hn,’l)h>

(5.37)
(V ’ EZJ Qh) = (va ’ ,éz’ Qh)
2At n n—1 ~n n
= T(V@ht — P+ EkmpV -uy,), Van) = (9", qn)
erlon = 0.
Due to (5.28) we know
. _ 11
I9"18 = 1,9 - 2215 < C(a0fmin{ o, | (5.39)
and noticing e = Py(e;)
. L 1Dl
Ay I Atz (e )
=0 (5.39)

AtZ(IIR"IF Vi) < o

Finally, we need a stability result for such a grad-div stabilized Stokes equation

defined by
Ek(Vuy,Vvuy) — (pr, V - vp) + 2(w X up, vp)
+ap(w, up, w,vp) +7(V-up, V-vy) = (h,v,) Yo, € Vy

(v * Up, qh) - (ga Qh) VQh S Qh
’u,h’aQ =0.

(5.40)
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Due to the discrete inf-sup condition there exists ug € V', satisfying

lgllo (V- wo,an) = (g:a1) Van € Qn (5.41)

This means that w;, = u;, — ug satisfies
Ek(Vwy,, V) — (pr, V - vp) + (V- wp, qn) + 2(w X wy, vy)
+ ap(w, wp,w,v) + (V- wp, V- vp)
= (h,vy) — Ek(Vug, Vo) — y(V - up, V - vp) — 2(w X ug, vp)

- ah(w7 Up, W, ’Uh)

V|| <

(5.42)

for all (vp,qn) € Vi, X Q.
Testing symmetrically we get

EE[|Vwa | + 71V - wall§ + Y (carllmar(war x wi)llg )
M

= Ek|Vw||g — (pr, V- wp) + 2(w x wy, wy) + (V- wy, pp)
+ ) (anllmar(war x wp)l[8 ) + IV - walff
M

= (h,wp) + Ek(Vuy, Vwy) + (V- up, V - wy,)
— 2(w X ug, wyp) — ap(w, ug, w, wy)

< (Iall=1 + EE[[Vuollo + [V - wollo
+ (2 + max{ay|wa | Hlwllo|[Varollo) [[Vaon)llo

Ek+ v+ (2 4+ maxy{ay|w W||so
g(||h||_1+ ( 5”{ wlws| D] ||9||0) Ivewn)lo
Wl Bk 4+ 2 + maxa{andwn Dol
<
= [V o < (1001 ma Il

= [Vunllo S [[Vuoll§ + [Vwnl[
hlo, Ek+~+(2+ -
< A Ly v+ (2 + maxy{an|wil})||w]] lgllo
Ek EkS
(5.43)
=Y ol (war X wy)lI5 o
M
1 Il Ek+’y+(2+maXM{aM]wM|})HwHongH 2
>~ Ek 1 ﬁ 0
= anllrar(@ar x wn)[§ ar (5.44)
M

S amllmar(wnr x wo)[§ar + Y anrllar(war x wp)llf o
M M
L (inn, 4 EEt o+ @4 maxp{anfwil})[wllo ’
E_ [All-1 + 3 lgllo) -




D. Arndt and G. Lube: Navier-Stokes in Rotating Frames 35
Using the inf-sup stability again there exists v, such that

IVoull < B el (V- vnoan) = —(pn.an)  Van € Qn.
and we find

BINVopllllpell < lpulls = —(pn, V - 1)

< (h,vp) — Ek(Vuy, Vv,) — ap(w, up, w, vp)
— 2(w X 'u,h,vh) — ’y(v . 'u,h,V . ’Uh)

< (Ihll=1 + (Ek + v + 2||w])] Vs |

+ m]‘?X{OéM}ah(wa Up, W, ’u,h)l/QHL«J”)va}ZH

< (Jhll-1 + (Bk + 7 + 2]wl)
Il Bkt + 2 mas{anden Dol
Ek EkS 0
max{an|w|}
vV EE
Ek+ 7+ (2 + maxar{anwu ) [wlloc
(s 2 mafawlon lglle )T
C Ek+~+2||w| maxy{an|w]
=l < 5 (14 ZEr 2l e loloull
o OBk +7+ 2+ maxy{au|warl ) ]«
5 Ekp
(B8 + 7 + 2lwll + VEEmax{alwal}) llgllo.

Applying this result to the previous inhomogeneous Stokes problem (5.37) yields

N N C
HZ:O Ve || + go el — Ekm,V - er||* < E—kz(At)?’. (5.45)

Finally, we note

N N
C
n n ~n |12 ~n |2 3
nzzo ler)* < HZ:O (llet — Ekm,V - €1|* + | Ekm,V - €1]%) < W(At) .

O

Now, we derived all error estimates due to time discretization that we wanted
and collect them in the following theorem.

THEOREM 5.1: The errors due to time discretization converge according to

”eUHZZZ(O,T;LQ(Q)) + At (HeUHZZQ(O,T;LPS) + HepHZQQ(O,T;LQ(Q))> < C(At)4' (5.46)

Proof: Lemma 5.5 and Lemma 5.3. g
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6. Numerical Examples

For numerical simulations, we take advantage of the C++-FEM package deal.ii
[16]. Let us first summarize some numerical experience with ”academic” numer-
ical examples in inertial frames of reference, see [1, 17]:

e For most the "academic” we see a relevant dependence of the error w.r.t to
the velocity error in case of one-level methods as in Subsec. 4.1-4.2. Only
when separation occurs or we consider non-convex domains an effect of LPS-
SU stabilization can be observed [1]. In particular, for a parameter choice
due to Tps ~ h/||u|[ps best results are achieved for the energy cascade in a
decaying, homogeneous, isotropic turbulence.

e The two-level approach is applied in [17] for methods with compatibility con-
dition which are covered by the theory in Subsec. 4.2. For an academic ex-
ample and the two-dimensional driven cavity problem with Reynolds num-
bers Reg € {1000, 7500}, similar conclusions as for the one-level method are
found. In particular, for the driven cavity problem a very good agreement
with benchmark results on much finer grids is observed.

e For results concerning the parameter design w.r.t. to the time discretization
we again refer to [15]. We basically see no influence for the local projec-
tion stabilization in inertial frames of references. However, the grad-div
stabilization parameter improves the velocity error for higher Reynolds
numbers much. On the other hand best results for the pressure are achieved
when no grad-div stabilization is used. For lower Reynolds number we see
a tremendous effect of the rotational correction in the projection step.

6.1. Analytical Reference

We first consider a manufactored solution, such that we know a solution we can
compare to and evaluate the rates of convergence.
Choose f such that the following pair is a solution in Q = [0, 1]

u(z) = sin () (— cos (%mc) sin <%7Ty) sin (%7?3:) cos (%ﬂ'@/))T
p(x) = —sin (%mc) sin (%ﬁy> sin ().

In this example we use the stabilization parameters v = 1, 73y = 1/|uy|* and
apr = 1. The time step size is fixed to At = 1073, Figures 1 and 2 show the effect
of the stabilization for various Ekman numbers, w = (0,0,1)” and Ro = 1.

We clearly see that the order of convergence in the unstabilized case dete-
rioates quickly with decreasing Ekman number. Using stabilization we acquire
the expected rates of convergence. Just for the finest meshes we see that the time
step size is dominating the error. For the pressure the error is independent of
stabilization and Ekman number. In this example the effect of LPS stabilization
is negligible (not shown).
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T
¢Ek=10" % Ek=10°
HEk=107% HEk=107
H-Ek=10" HEk=10"

~ HEk=107" ~, HEk=107"
10 F —n2 10 F —n2

h® h®

Figure 1: Velocity error w.r.t. L?(Q) for the analytical testcase,
unstabilized (left) and stabilized (right)

T
> Ek=10° > Ek=10°

H*Ek=10"7 HEk=10"7]
HEk=10""] HEk=10"]
¥ Ek=10""] ¥ Ek=10""]

Figure 2: Velocity error w.r.t. H*(Q) for the analytical testcase,
unstabilized (left) and stabilized (right)

6.2. Rotating Poiseuille Flow

Next we turn our attention to a slightly more realistic case. We consider a channel
given by the domain 2 = [—2, 2] x [—1, 1] which rotates around its midpoint and
the inflow is given by a quadratic profile.

wlz _ (1—y2,O)T, = -2
(@) {(o,o>T, vl =1

(Vu-m)(z = 2,4) = 0
uy=0, pp=0, f=0

For the critical parameters we choose w = (0,0, 100)T and Ek = 1073, The basic
flow we expect is one where all outflow happens in a small area on the bottom left
side. In particular, the streamlines are strongly curved at the outflow boundary
and resolving the boundary layers there by stabilization or grid refinement is
important to prevent that oscillations occur.

For this example we use the stabilization parameters v = 1, py = 1/]up|?
and ay; = 1/h. Using only grad-div stabilization leads to high oscillations that
spread from the outflow into the interior of the domain (Figure 3). This behav-
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Figure 3: Rotating Poiseuille Flow, grad-div
left: Streamlines; right: Profile at the outflow boundary z = 2

01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 16 17 18 19 2

Figure 4: Rotating Poiseuille Flow, grad-div adaptive
left: Streamlines; right: Profile at the outflow boundary z = 2

ior improves when the mesh is refined adaptively (Figure 4), but nevertheless
oscillations occur. Hence, grad-div stabilization is not sufficient in this example.

Using LPS-Coriolis stabilization additionally improves the solution a lot. All
the oscillation in the interior of the domain are damped away and only at the
outflow boundary smaller oscillations occur (Figure 5). If we use the LPS-SUPG
stabilization instead the situation is similar but there are oscillations that spread
into the interior (Figure 6).

Finally, we combine all the considered stabilizations and use adaptive mesh
refinement. This finally leads to a solution that has all the features (Figure 7)
and we see that all these parts are necessary.

6.3. The Proudman-Stewartson Problem

We now come to a more realistic case in which we consider the fluid motion
between two rotating spheres. The frame of reference we choose is one in which
the one does not move. Given that the inner cylinder rotates with a angular
velocity vector w;e, and the outer one with w,e, the problem that we are solving
can be stated as
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Figure 5: Rotating Poiseuille Flow, Coriolis
left: Streamlines; right: Profile at the outflow boundary =z = 2

Figure 6: Rotating Poiseuille Flow, SUPG
left: Streamlines; right: Profile at the outflow boundary = = 2
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Figure 7: Rotating Poiseuille Flow, SUPG Coriolis Adaptive
left: Streamlines; right: Profile at the outflow boundary =z = 2
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0
a—?+R0(u-V)u+2équ:EkAu—Vp
V-u=0
u = rsinfe, at r =1y
u=0 atr=r,

where the critical parameters are defined as follows

ri=1/2 ro =3/2
W; — Wy Ek — 14

Wo Wo(ro — 1)

The flow that we expect to see is one in which the angular velocity is between
the ones on the outer and inner sphere in the cylinder r < r;. Outside this
cylinder the flow should basically be at rest. For small Ekman numbers we expect
to see basically a solution that is constant in z-direction and following the motion
of the inner sphere, i.e.

u = rsinfeg

in the rotating frame of reference. The boundary layers (Ekman layers) at the
inner and outer sphere have a width according to Ek'/2. A secondary flow is
given by a meridional circulation from the outer to the inner Ekman layer inside
the cylinder » < r; and from the inner to the outer Ekman layer outside this
cylinder.

In order to resolve the various flow structure we again take advantage of an
adaptive mesh refinement that is based on the jump of the gradient of the solution
along the faces of each cell. We expect to see that most of refinement takes place
near the inner and outer sphere and the boundary of the tangent cylinder, i.e.
at r = r;. A typical picture can be seen in Figure 8.

In the following Figures 9 - 14 we consider the occurring flow different Ekman
and Rossby numbers. In agreement with [18] we observe only minor effects for
the profile of the angular velocity with respect to Ro. However, the solutions
for Fk = 4.5 are unstable and thus not shown here. Apart from that we see
that the chosen parameter setting in combination with the use of adaptive mesh
refinement is sufficient to resolve all the relevant flow features.

6.4. Precessing Sphere

The last example that we are going to consider is a precessing sphere. That is
work in progress. At the moment we are interested in confirming the results
that Y.Lin, P.Marti and J.Noir in [19] obtained for precessional instabilities in
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Figure 8: Proudman-Stewartson problem,
left: Iso faces of the velocity magnitude for Ek = 107, Ro = 0;
right: Mesh and isolines for Ek = 10=%, Ro = .5

Figure 9: Instabilities of the Stewartson Layer, Ek=10"3"5, Ro=—.5

a rotating spherical cavity. Considering the frame in which the mantle frame is
fixed the set of equations that we solve for this problem is given by

6—u—|—(u-V)u—EkAu+2(lAc+Pol;:p)xu:fPO—Vp

ot
V-u=0
u =0 in 0Q x (0,7



D. Arndt and G. Lube: Navier-Stokes in Rotating Frames

oss
— — e |

Figure 12: Instabilities of the Stewartson Layer, Ek=10"%, Ro=—.5
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Figure 14: Instabilities of the Stewartson Layer, Ek=10"%, Ro=.5

where the Poincar force is given by fp, = Po(lzzp X IAc) X T

k, =(i cos(t) — 3 sin(t)) sin(ay) + k cos(ay)
EEk Qp
Fk.=—— Po:=—.
O 0T,
At first we are interested in the main flow that is excited by the precessional
force. Therefore we consider the angle that the main fluid rotation axis forms
with the rotation axis around which the precession axis rotates. Defining the

velocity in the pression frame by
u=u+2zxr
this angle ay is defined according to
2wp = (V xul) = (V xu) +22

cos(ap) = k- wp
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Figure 15: Y.Lin, P.Marti, J.Noir: Sketch of the problem

Table 1: The angle ar between rotation axes of the container and the fluid in dependence of
the Poincare number and the Ekman number

Ek| 107" | 10° | 10°® [3-107° [3-107° | 3-107°
Po| —-107*| —-107* | —107* | —107=3 | —.0007 | —0.014
ap | 0.0014 | 0.0099 | 0.0029 | 0.020 0.49 0.32
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Figure 16: left: ap in dependence on Po at fixed Ek = 3.0 x 1075;
right: ar in dependence on Ek at fixed Po = —1.0 x 1074
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Figure 17: Precessing Sphere, Ek = 1076, Po = —1074,
View on the equatorial plane, left to right: |Ju||, u,, ug, ug

Figure 18: Precessing Sphere, Ek = 107%, Po = —1074,
View on the = 0 plane (z-axis up), left to right: |lul], u,, us, ue

Our results with respect to this quantity can be seen in Table 1. Comparing
with the diagram that Lin et al. obtained (see Figure 16) we observe a good
agreement with the left plot up to Po = 0.007 and with the right plot up to
Po = 107°. We suspect the deviation of the other points to be a consequence of
averaging the vorticity over too much of the near boundary area.

Exemplarily, we show in Figures 17 and 18 the flow patterns for Fk = 1076,
Po = —10~* that we observe after substracting the main fluid rotation. Due to
the fact that this pictures show a sufficient resolution of the boundary layer we
see our previous suspection for the computation of the main fluid rotation axis
confirmed.

7. Discussion and Summary

We considered conforming finite element (FE) approximations of the time-
dependent Navier-Stokes problem with inf-sup stable approximation of velocity
and pressure in rotating frames of reference. We introduced a variant of the
local projection stabilization method for dealing with cases in which critical
parameter introduce unphysical oscillations to the solution. The approach
combines ideas of streamline upwinding, grad-div stabilization and stabilization
of theskew-symmetric coriolis term.

A stability and convergence analysis is provided for the arising nonlinear
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semidiscrete problem. Similar to [9] and our observations in [15], we can show
that the Gronwall constant does not explicitly depend on the Reynolds number
Regq for velocities w € [L°°(0,T; Wh=(Q)]e. In the interesting case of LPS
methods without an additional compatibility condition between the basic local
velocity space and the projection space, our approach improves a result of
Matthies/Tobiska in [7] for the Oseen problem. If the mentioned compatibility
condition is valid, we can remove a restriction on the local mesh width which
appeared in the former case.

The grad-div stabilization with parameters 7 ~ 1 seems to be essential
for improved mass conservation and velocity estimates in W?(2). Numerical
examples confirm these theoretical results. In particular, for boundary layer
flows the SUPG-type stabilization 73y ~ 1/u?%; seems to be important for
modeling unresolved velocity scales. However, in case of dominating rotation a
stabilization that only affects the streamline direction of the flow does not seem
to be sufficient. In this case the suggested stabilization of the coriolis term is
essential. Furthermore, the results show that the proposed approach is capable
of resolving flow structures in physically interesting cases.

Future considerations to further examine the flow structures in spherical pre-
cessing domains and thus confirming the results from ETH Ziirich group. Fur-
thermore we want to extend the observations to ellipsoidal domains with a small
eccentricity.

A. The Inverse Stokes Operator

For the defined ansatz spaces V), and @), we define the (grad-div and Coriolis
stabilized) inverse Stokes operator as the solution Sv € V', of the problem

Ek(VSv,Vw) — (r,V - w) + 2(w X Sv,w)
+v(V - Sv, V- w) + ap(w, Sv,w, w) = (v,w) Yw € V),
(V-Sv,q) =0 Vg € Qn

In particular Swv is discretely solenoidal, i.e. Sv € V;if“.
By testing this equation symmetrically we can derive an estimate on the
solution in the H!'-Seminorm

EE||VSol§ + 1[IV - Svllg + ) (aarllmar(w x Sv)][5 1)
M

= (v, 5v) < [[v][ ][V

1 (A.1)
<
VSl < ol

1
= Y anllrar(w x Sv)|§y < il
M
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According to the discrete inf-sup condition (2.3), we have for r € @) the
existence of a unique w € V', with

(V- w,q) =—(r,q) Yq€Qn
|Vl < 877

Testing with (w,0) € V), x @5, we obtain

BlIVwllrl < Il

< (v,w) — Ek(VSv,Vw) — (V- Sv,V - w)
—ap(w, Sv,w, w) — 2(w x Sv,w)

< (|[o]l1 + (Bk +7)|VSv|
+Cp m]\z}x{\/@}ah(w,Sv,w7Sv)1/2||wH||Vw||
+2C, [wl[[IVSv|[[Vaw||

v maxs{+/0 } 205
< FA .
N (2 * Ek * (CP VEk + Ek lwarll ) [[ofl-1[[Vw]]

A combination of these estimates states

Y maXM{\/OéM} 1
< L Sl el S T .
|7l + Ek||VSv| < C <1 + Fop + ( N + Ek:) HwMH) |lv||-1
(A.2)

Provided the solution is sufficiently smooth we test with (—ASv, —Ar) to get

Ek||ASv|)2 4+ 7||VV - Sv||2 4 aljw x VSv|?

= FEk(V -VSv, V- -VSv)+~(VV-Sv,VV - Sv) + ap(w, VSv,w, VSv)

= —Ek(VSv,VASv) + (r,V - ASv) — (V- Sv, Ar) — 2(w x Sv, ASv)
— ap(w, Sv,w, ASv) —y(V - Sv,V - ASv)

= —(v,ASv) < |v[|ASv||

1
A < —
= Asv] < o]

1
= %:QMHHM(WM x VSv)|[g 4 < ﬁ”vﬂ2
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For the pressure we get by testing with w = Vr

IVrl§ ==,V - Vr)
= —FEk(VSv,VVr) —~v(V-Sv,V-Vr)+ (v,Vr)
—ap(w, Sv,w,Vr) —2(w x Sv, Vr)
= Ek(ASv,Vr)+~(VV .- Sv,Vr)+ (v, Vr)
— ap(w, Sv,w,Vr) —2(w x Sv, Vr)
< (EE[ASv| +~[IVV - Sof + [[v]))[[Vr]
—ap(w, Sv,w,Vr) —2(w x Sv,Vr)
< ((Ek +y)[[ASv[| + o) V7
+max{y/ay fan(w, Sv, w, Sv)||lw||[Vr]| + 2fw[||Sv]|[Vr]

ol maxy{ /an} = 2
< I oMWY M, 2
< (24 g+ (P 2 hourl) ol

v maxy{\/an} 2
< o (22w eMT 2
= 197l < (24 g (P2 2 o o

using the vector identity Vx Vxv =VV-v—Av and (VX V xv,VV-v) =0.
Next we are interested in a lower bound for the seminorm induced by the
inverse Stokes operator.

lv|s :=Ek(VSv,Vv)+ (V- Sv,V-v) + ap(w, Sv,w, v)
=[lvll§ + (r,V - v)
=|jv||2 — (Vr,v —v*) Yo' c Vi
>[lvllg = IVrillv — v

v maxy {\/an} = 2 .
2ol - (24 g + (P24 2 o) ol - o) (49

> (1 (e oy (VD L 2 Y ) 2) ol

1
— —|lv =" Ve>0
€
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