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Abstract

We consider conforming finite element (FE) approximations of the time-
dependent, incompressible Navier-Stokes problem in rotating frames with
inf-sup stable approximation of velocity and pressure. In case of high
Reynolds numbers, a local projection stabilization (LPS) method is con-
sidered. In particular, the idea of streamline upwinding is combined with
stabilization of the divergence-free constraint and a stabilization for the
Coriolis term. For the arising nonlinear semidiscrete problem a stability
and convergence analysis is given. The spatial analysis is an extension
to our previous result in [1] for inertial frame of references to rotating
ones. The convergence with respect to time extends results for the Stokes
case [2] in inertial frames of references to rotating ones. Some numerical
experiments complement the theoretical results. July 29, 2015

1. Introduction

We consider the time-dependent Navier-Stokes equations

∂tu− ν∆u+ (u · ∇)u+ 2ω × u+∇p = f in (0, T )× Ω, (1.1)

∇ · u = 0 in (0, T )× Ω, (1.2)

u = 0 in (0, T )× ∂Ω, (1.3)

u(0, ·) = u0(·) in Ω (1.4)

in a bounded polyhedral domain Ω ⊂ Rd, d ∈ {2, 3}. Here u : (0, T ) × Ω → Rd

and p : (0, T )×Ω→ R denote the unknown velocity and pressure fields for given
viscosity Ek > 0 and external forces f ∈ [L2(0, T ;L2(Ω))]d.
Defining Uref , Lref and ωref as characteristic velocity, length and angular velocity
for the considered problem, we can derive critical non-dimensional parameters.

∗The work was supported by SFB 963 founded by German research council (DFG).
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These are the Ekman number Ek, the Rossby number Ro and the Reynolds
number Re defined by

Re =
UrefLref

ν
Ro =

Uref
2Lrefωref

Ek =
ν

2L2
refωref

=
Ro

Re

Using these quantities a non-dimensional version of the Navier-Stokes equations
is given by

∂̂tû− Ek∆̂û+Ro(û · ∇̂)û+ 2ω̂ × û+ ∇̂p̂ = f̂ in (0, T̂ )× Ω̂, (1.5)

∇̂ · û = 0 in (0, T̂ )× Ω̂, (1.6)

û = 0 in (0, T̂ )× ∂Ω̂, (1.7)

û(0, ·) = û0(·) in Ω̂. (1.8)

where we indicate non-dimensionality by hat .̂ For the sake of simplicity we
will omit the hats ˆ in the following.

In this paper, we consider stabilized finite element (FE) approximations of
problem (1.5)-(1.8). In particular, inf-sup stable velocity-pressure FE pairs are
chosen together with local projection stabilization (LPS). To our knowledge,
there are not many results available in the literature, even in the case of a
inertial frame of reference. The stationary case was considered in [3] under the
strong condition of small data. A related LPS model has been considered in [4]
for the stationary problem under a small data assumption. Some results for the
time-dependent case can be found in [5] and [6] where LPS-based subgrid models
of Smagorinsky type were considered.

For the linear Oseen problem, Matthies & Tobiska [7] provide a compre-
hensive overview regarding stabilized FE methods, in particular, in the case
of LPS methods for inf-sup stable FE methods. (For a corresponding review
and presentation of LPS methods with equal-order interpolation of velocity and
pressure, we refer to [8].) In [7], the authors consider basically two variants of
LPS methods: (1) stabilization of the streamline derivative b · ∇ together with
grad-div stabilization, and (2) stabilization of the full velocity gradient.

Here, we consider variant (1) for the time-dependent Navier-Stokes problem
by extending the analysis in our paper [1] for the case of an inertial frame of
reference. As in [7] we consider different cases:

(i) Methods of order k without compatibility condition:
For standard pairs V h × Qh ⊂ V × Q := [W 1,2

0 (Ω)]d × L2
0(Ω) of conforming

inf-sup stable velocity/pressure approximation of polynomial order k/k−1 with
k ∈ N \ {1}, one- and two-level variants of the LPS method are shown to be of
order k in the standard norm in V × Q. In the case of high Reynolds numbers
ReΩ := ‖u‖L∞(Ω)diam(Ω)/ν = RoΩ/EkΩ, the analysis requires a relatively mild
restriction on the mesh Reynolds number ReM := ‖u‖L∞(M)hM/ν. In the one-
level case, no enrichment of the discrete velocity space V h is necessary (with
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possible exception of discontinuous spaces Qh). The analysis heavily relies on
working in the subspace V div

h of discretely divergence-free functions.
Inspired by the approach of Burman & Fernandez in [9] for edge stabilized

FE methods (with equal-order discrete velocity-pressure) to problem (1.5)-(1.8),
we can show that in case of u ∈ [L∞(0, T ;W 1,∞(Ω))]d the Gronwall constants
depends on the norm in this space but not explicitly on the Reynolds number.

(ii) Methods of order k with compatibility condition:
In order to avoid the restriction on the mesh Reynolds number ReM , we consider
such pairs V h × Qh of polynomial order k/k − 1 with a special interpolation
operator in the discrete velocity space. This interpolator exists if a certain
(macro-)elementwise compatibility condition between the discrete velocities on
the fine mesh and on the projection space is valid, see [10]. Unfortunatelyly, this
interpolator is in general not applicable in V div

h .
We show that, in case of the mentioned compatibility condition, the restric-

tion on the mesh Reynolds number can be avoided. In particular, for one-level
methods this condition eventually requires an enrichment of the discrete velocity
space. Moreover, a careful selection of the discrete pressure space is necessary.

(iii) Methods of order k + 1/2:
Finally, as in [7] we discuss methods of order k + 1/2 in the case of Ek ≤ Ch.
For one-level methods, this is accomplished by increasing the polynomial order
of the discrete pressure in the setting of methods (ii).

For inf-sup stable (but not exactly divergence-free) pairs V h × Qh, the ap-
plication of the so-called grad-div (or grad-div) stabilization is important. A
critical issue is the design of the stabilization parameter set. As a rule of thumb
a globally constant value γ ≡ γM ∼ 1 always improves mass conservation but
might be different from case to case. Even for the Stokes problem with ReΩ = 0,
the results in [11] give no general result. On the other hand, for simplicial meshes
it is shown in [12] that solutions with Taylor-Hood elements [Pk]d/Pk−1, k ≥ d
converge with γ →∞ to the (pointwise divergence-free) Scott-Vogelius solution.
We address the choice of the stabilization parameter in more detail in numerical
experiments.

Outline of the paper: In Section 2 we introduce the LPS method for the time-
dependent Navier-Stokes problem. Then, in Section 3, stability issues and well-
posedness of the method are discussed. Methods of order k without enrichment
are considered in Section 4.1, whereas methods of order k with enrichment are
the subject of Section 4.2. Methods of order k + 1

2
are addressed in Section 4.3.

Some numerical results together with a critical discussion of the parameter design
are given in Section 6.
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2. LPS Method for the Navier-Stokes Problem

In this section, we describe the model problem and the spatial semidiscretization
based on inf-sup stable interpolation of velocity and pressure together with local
projection stablization.

2.1. Time-Dependent Navier-Stokes Problem

In the following, we will consider the usual Sobolev spaces Wm,p(Ω) with norm
‖ · ‖Wm,p(Ω),m ∈ N0, p ≥ 1. In particular, we have Lp(Ω) = W 0,p(Ω). Moreover,

the closed subspaces W 1,2
0 (Ω), consisting of functions in W 1,2(Ω) with zero trace

on ∂Ω, and L2
0(Ω), consisting of L2-functions with zero mean in Ω, will be used.

The inner product in L2(D) with D ⊆ Ω will be denoted by (·, ·)D. In case of
D = Ω we omit the index.

The variational formulation of problem (1.5)-(1.8) reads:
Find U = (u, p) : (0, T )→ V ×Q := [W 1,2

0 (Ω)]d × L2
0(Ω) such that

(∂tu,v) + AG(u;U ,V) = (f ,v) ∀V = (v, q) ∈ V ×Q (2.1)

with the Galerkin form

AG(w;U ,V) :=Ek(∇u,∇v) + (2ω × u,v)− (p,∇ · v) + (q,∇ · u)︸ ︷︷ ︸
=:aG(U ,V)

+
Ro

2

[
((w · ∇)u,v)− ((w · ∇)v,u)

]︸ ︷︷ ︸
=c(w;u,v)

.
(2.2)

The skew-symmetric form of the convective term c is chosen for conservation
purposes. In this paper, we will assume that the velocity field u belongs to
[L∞(0, T ;W 1,∞(Ω))]d which ensures uniqueness of the solution.

2.2. Finite Element Spaces

For a simplex T ∈ Th or a quadrilateral/hexahedron T in Rd, let T̂ be the
reference unit simplex or the unit cube (−1, 1)d. The bijective reference mapping
FT : T̂ → T is affine for simplices and multi-linear for quadrilaterals/ hexahedra.
Let P̂l and Q̂l with l ∈ N0 be the set of polynomials of degree ≤ l and of
polynomials of degree ≤ l in each variable separately. Moreover, we set

Rl(T̂ ) :=

{
Pl(T̂ ) on simplices T̂

Ql(T̂ ) on quadrilaterals/hexahedra T̂ .

Bubble-enriched spaces are

P+
l (T̂ ) := Pl(T̂ ) + bT̂ · Pl−2(T̂ ), Q+

l (T̂ ) := Ql(T̂ ) + ψ · span{x̂r−1
i , i = 1, . . . , d}
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with polynomial bubble function bT̂ :=
∏d

i=0 λ̂i ∈ P̂d+1 on the reference simplex T̂

with barycentric coordinates λ̂i and with d-quadratic function ψ(x̂) :=
∏d

i=1(1−
x̂2
i ) on the reference cube. Define

Yh,−l := {vh ∈ L2(Ω) : vh|T ◦ FT ∈ Rl(T̂ ) ∀T ∈ Th},
Yh,l := Yh,−l ∩W 1,2(Ω)

and bubble-enriched spaces Y +
h,±l

accordingly.

For convenience, we write V h = Rk instead of V h = [Yh,k]
d ∩ V (with obvious

modifications for R+
k ) and Qh = R±(k−1) instead of Qh = Yh,±(k−1) ∩Q.

Assumption 2.1: Let V h ⊆ [Yh,k]
d ∩ V and Qh ⊆ Yh,−k−1 ∩ Q be FE spaces

satisfying a discrete inf-sup-condition

inf
q∈Qh\{0}

sup
v∈V h\{0}

(∇ · v, q)
‖∇v‖0‖q‖0

≥ β > 0 (2.3)

with a constant β independent on h.

Eh is the set of inner element faces E 6∈ ∂Ω of Th. We denote by hE the
diameter of the face E ∈ Eh. For two cells TE and T ′E shared by E let nE be the
unit normal vector pointing from TE into T ′E. For piecewise smooth functions
wh, we denote by [wh]E := (wh|TE)|E − (wh|T ′E)|E the jump over the face E.

2.3. Local Projection Stabilization

For a Galerkin approximation of problem (2.1)-(2.2) on an admissible partition
Th of the polyhedral domain Ω, consider finite dimensional spaces V h × Qh ⊂
V ×Q. Then, the semidiscretized problem reads: Find Uh = (uh, ph) : (0, T )→
V h ×Qh such that for all Vh = (vh, qh) ∈ V h ×Qh:

(∂tuh,vh) + AG(uh;Uh,Vh) = (f ,vh). (2.4)

The semidiscrete Galerkin solution of problem (2.4) may suffer from spurious
oscillations due to poor mass conservation, dominating advection or dominating
rotation. The idea of local projection stabilization (LPS) methods is to separate
discrete function spaces into small and large scales and to add stabilization terms
only on small scales.

Let {Mh} be a family of shape-regular macro decompositions of Ω into
d-simplices, quadrilaterals (d = 2) or hexahedra (d = 3). In the one-level LPS-
approach, one has Mh = Th. In the two-level LPS-approach, the decomposition
Th is derived from Mh by barycentric refinement of d-simplices or regular
(dyadic) refinement of quadrilaterals and hexahedra. We denote by hT and hM
the diameter of cells T ∈ Th and M ∈ Mh. It holds hT ≤ hM ≤ ChT for all
T ⊂M and M ∈Mh.
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Assumption 2.2: Let the FE space Y h,k satisfy the local inverse inequality

‖∇vh‖0,M ≤ Ch−1
M ‖vh‖0,M ∀vh ∈ Y h,k, M ∈Mh. (2.5)

Assumption 2.3: There are (quasi-)interpolation operators ju : V → V h and
jp : Q→ Qh such that for all M ∈Mh, for all w ∈ V ∩ [W l,2(Ω)]d with 2 ≤ l ≤
k + 1:

‖w − juw‖0,M + hM‖∇(w − juw)‖0,M ≤ ChlM‖w‖W l,2(ωM ) (2.6)

and for all q ∈ Q ∩H l(M) with 2 ≤ l ≤ k:

‖q − jpq‖0,M + hM‖∇(q − jpq)‖0,M ≤ ChlM‖q‖W l,2(ωM ). (2.7)

on a suitable patch ωM ⊃M . Moreover, let

‖v − juv‖L∞(M) ≤ ChM |v|W 1,∞(M) ∀v ∈ [W 1,∞(M)]d.

Let DM ⊂ [L∞(M)]d denote a FE space on M ∈ Mh for uh. For each
M ∈Mh, let πM : [L2(M)]d →DM be the orthogonal L2-projection. Moreover,
we denote by κM := id− πM the so-called fluctuation operator.

Assumption 2.4: The fluctuation operator κM = id− πM provides the approx-
imation property (depending on DM and s ∈ {0, · · · , k}):

‖κMw‖0,M ≤ ChlM‖w‖W l,2(M), ∀w ∈ W l,2(M), M ∈Mh, l = 0, . . . , s. (2.8)

A sufficient condition for Assumption 2.4 is [Ps−1]d ⊂DM .
For each macro element M ∈ Mh, let the elementwise averaged streamline
direction uM ∈ Rd and the elementwise averaged angular velocity ωM ∈ Rd be
such that

|uM | ≤ C‖u‖L∞(M), ‖u− uM‖L∞(M) ≤ ChM |u|W 1,∞(M)

|ωM | ≤ C‖ω‖L∞(M), ‖ω − ωM‖L∞(M) ≤ ChM |ω|W 1,∞(M).
(2.9)

One possible definition is

uM :=
1

|M |

∫
M

u(x) dx, ωM :=
1

|M |

∫
M

ω(x) dx. (2.10)

The semidiscrete LPS model reads:
Find Uh = (uh, ph) : (0, T )→ V h×Qh, such that for all Vh = (vh, qh) ∈ V h×Qh:

(f ,vh) =(∂tuh,vh) + AG(uh;Uh,Vh)

+ sh(uh;uh,vh) + th(uh;uh,vh) + ah(ω,uh,ω,vh) + ih(ph, qh)

(2.11)



D. Arndt and G. Lube: Navier-Stokes in Rotating Frames 7

with the streamline-upwind (SUPG)-type stabilization sh, the grad-div (or grad-
div) stabilization th, the Coriolis stabilization ah and pressure jump stabilizations
ih according to

sh(wh;u,v) :=
∑

M∈Mh

τM(wM)(κM((wM · ∇)u), κM((wM · ∇)v))M

(2.12)

th(wh;u,v) :=
∑

M∈Mh

γM(wM)(∇ · u,∇ · v)M , (2.13)

ah(w
1
h,uh,w

2
h,vh) :=

∑
M∈Mh

αM(wM)(κ(w1
M × uh), κ(w2

M × vh))M , (2.14)

ih(p, q) :=
∑

E∈∂M,M∈Mh

φE([p]E, [q]E)E. (2.15)

The set of stabilization parameters τM(uh), αM(ω), γM(uM), and φE has to be
determined later on. For reasons to be discussed later, we impose:

Assumption 2.5: Assume that for all M ∈Mh:

0 ≤ τM(uM) ≤ τ0

|uM |2
, γ0 max

M
hM ≤ γM(uM) ≤ γ0,

0 ≤ αM(ωM) ≤ α0

|ωM |2h2
M

φE ≥ 0.
(2.16)

In case of uM = 0 we set τM(uM) = 0.

3. Stability Analysis

In this section, we derive stability estimates for the discrete velocity and pressure
fields. Moreover, the existence of the solution of the LPS problem (2.11) is shown.

3.1. Notation

For the analysis, let us define the mesh-dependent expression ||| · |||LPS for all
V = (v, q) ∈ V ×Q by

|||V |||2LPS := Ek‖∇v‖2
0 + sh(uh;v,v) + ah(ω,uh,ω,v) + th(uh;v,v) + ih(q, q).

(3.1)

This is motivated by symmetric testing V = U together with w = uh in (2.2)

|||V |||2LPS = AG(uh;V ,V) + sh(uh;v,v)

+ th(uh;v,v) + ah(ω,v,ω,v) + ih(q, q)

due to the skew-symmetric form of the convective term. In the case ih ≡ 0, we
will write

|||vh|||LPS := |||(vh, 0)|||LPS. (3.2)
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One basic idea of the numerical analysis is to handle the discrete velocity and
pressure separately since Assumption 2.1 implies that

V div
h := {vh ∈ V h | (∇ · vh, qh) = 0 ∀qh ∈ Qh} 6= {0}. (3.3)

3.2. Velocity Estimates

The first result gives control of the kinetic energy and of the dissipation terms
for the discrete velocity uh ∈ V div

h .

Lemma 3.1: Let f ∈ L1(0, T ;L2(Ω)) and u0 ∈ L2(Ω). For 0 ≤ t ≤ T , we obtain

1

2
‖uh(t)‖2

L2(Ω) +

∫ t

0

|||uh(τ)|||2LPS dτ ≤ ‖uh(0)‖2
L2(Ω) +

3

2
‖f‖2

L1(0,t;L2(Ω)). (3.4)

Proof: Symmetric testing with V h = (vh, 0) ∈ V div
h ×Qh provides

1

2

d

dt
‖uh‖2

L2(Ω) + |||uh|||2LPS
= (∂tuh,uh) + AG(uh;Uh,Uh) + sh(uh;uh,uh)

+ ah(ω,uh,ω,uh) + th(uh;uh,uh)

= (f ,uh).

(3.5)

Estimate (3.5) gives

‖uh‖L2(Ω)

d

dt
‖uh‖L2(Ω) =

1

2

d

dt
‖uh‖2

L2(Ω) ≤ (f ,uh) ≤ ‖f‖L2(Ω)‖uh‖L2(Ω),

hence d
dt
‖uh‖L2(Ω) ≤ ‖f‖L2(Ω). Integrating in time leads to

‖uh(t)‖L2(Ω) − ‖u0‖L2(Ω) =

∫ t

0

d

dτ
‖uh(τ)‖L2(Ω) dτ ≤

∫ t

0

‖f(τ)‖L2(Ω)dτ

which provides

‖uh(t)‖L2(Ω) ≤ ‖u0‖L2(Ω) + ‖f‖L1(0,t;L2(Ω)). (3.6)

We start again from (3.5), integrate in time, apply (3.6) and Young’s inequality:

1

2
‖uh(t)‖2

L2(Ω) +

∫ t

0

|||uh(τ)|||2LPS dτ ≤
1

2
‖uh(0)‖2

L2(Ω) +

∫ t

0

(f(τ),uh(τ))dτ

≤ ‖uh(0)‖2
L2(Ω) +

3

2
‖f‖2

L1(0,t;L2(Ω)),

i.e., estimate (3.4) is valid. 2

Now, we can prove an existence result for the discrete velocity.



D. Arndt and G. Lube: Navier-Stokes in Rotating Frames 9

Corollary 3.1: There exists a discrete solution uh : [0, T ] → V div
h of the

semidiscrete LPS model (2.11).

Proof: We look for a solution uh : [0, T ]→ V div
h of the semidiscrete problem

(∂tuh,vh) = (f ,vh)− AG(uh;Uh,Vh)− sh(uh;uh,vh)
− ah(ω,uh,ω,vh)− th(uh;uh,vh)

(3.7)

with appropriate initial condition uh(0) = u0h. V
div
h is a finite-dimensional

Banach space and the right hand side of (3.7) continuously depends on (t,uh) ∈
[0, T ] × V div

h . As a consequence of Lemma 3.1, each (potential) solution of
(3.7) is bounded on [0, T ]. This implies boundedness of the right hand side on
[0, T ]×V div

h . Then the generalized Peano theorem is applicable. A local solution
of (3.7) can be extended to [0, T ]. 2

Remark: A uniqueness result for the semidiscrete problem (3.7) is still open.
However, if we assume Lipschitz continuity in time for f , the Picard-Lindelöf
theorem yields uniqueness of the solution.

3.3. Pressure Estimates

The existence of the discrete pressure ph ∈ Qh is guaranteed via Assumption 2.1.
Moreover, we obtain the following stability result.

Corollary 3.2: Let uh : [0, T ] → V div
h ⊂ V h be a solution of the Cauchy

problem (3.7). For 0 ≤ t ≤ T we obtain for the discrete pressure ph:

‖ph‖L1(0,t;L2(Ω))

≤ 1

β

[
‖f‖L1(0,t;(V h)∗) + ‖∂tuh‖L1(0,t;(V h)∗) +K

∫ t

0

|||uh(τ)|||LPS dτ
]

where

K :=
√
Ek +

CPRo‖uh‖L∞(0,t;L∞(Ω)) + C2
P‖ω‖L∞(0,t;L∞(Ω))√

Ek

+ max
M

√
τM‖uM‖L∞(0,t;L∞(M)) + dγM + CPαM‖ω‖L∞(0,t;L∞(M)).

Proof: According to the discrete inf-sup condition (2.3), see Assumption 2.1, we
have for all ph ∈ Qh the existence of a unique vh ∈ V h with

∇ · vh = −ph, ‖∇vh‖L2(Ω) ≤ β−1‖ph‖L2(Ω). (3.8)

Testing in equation (2.11) with (vh,0) ∈ V h × Qh, we obtain via Friedrich’s
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inequality that

‖ph‖2
L2(Ω) = − (ph,∇ · vh)

= (f ,vh)− (∂tuh,vh)− Ek(∇uh,∇vh)− 2(ω × uh,vh)− c(uh;uh,vh)
− sh(uh;uh,vh)− th(uh;uh,vh)− ah(ω,uh,ω,vh)

≤ ‖∇vh‖L2(Ω)

[
‖f‖(V h)∗ + ‖∂tuh‖(V h)∗

+

(√
Ek +

CPRo‖uh‖L∞(Ω) + C2
P‖ω‖L∞(Ω)√

Ek

+ max
M

√
τM‖uM‖L∞(M) + dγM + CPαM‖ω‖L∞(M)

)
|||uh|||LPS

]
.

From (3.8) we get

β‖ph‖L2(Ω) ≤ ‖f‖(V h)∗ + ‖∂tuh‖(V h)∗ +K|||uh|||LPS.

Finally, the assertion follows via integration in time. 2

4. Quasi-optimal Error Estimates

In this section, we derive quasi-optimal estimates for the kinetic energy and
dissipation (including fluctuations terms). To this goal, we decompose the error:

U − Uh = (U − JU) + (JU − Uh) =: A +Eh ≡ (ηu, ηp) + (eh, rh). (4.1)

Here, J = (ju, jp) denotes an appropriate interpolator in V h × Qh. We are
interested in methods of order k, i.e., there exists a constant C > 0, independent
of critical data (like Ek,Ro and h) such that for 0 ≤ t ≤ T and a sufficiently
smooth solution (u, p):

‖eh‖2
L∞(0,t);L2(Ω)) + Ek‖∇eh‖2

L2(0,t;W 1,2
0 (Ω)

+

∫ t

0

[
sh(uh; eh, eh) + th(uh; eh, eh) + ah(ω, eh,ω, eh)

]
dτ

≤ Ch2k
(
|u|2L2(0,t;Wk+1,2(Ω)) + ‖∂tu‖2

L2(0,t;Wk,2(Ω)) + |p|2L2(0,t;Wk,2(Ω))

)
.

(4.2)

In a first step (see Subsec. 4.1), we prove this result for a wide range of
FE pairs V h × Qh under a (mild) mesh restriction. The basic tool will be to
work in the space V div

h . In a second step (see Subsec. 4.2), we will remove the
mesh restriction. This is accomplished under an additional inf-sup condition, see
Assumption 4.2 below, which restricts the possible choices of V h ×Qh. Finally,
we want to identify methods of order k + 1

2
for Ek ≤ Ch, see Subsec. 4.3.
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4.1. Methods of Order k without Compatibility Condition

We will perform the error analysis for the velocity uh in V div
h . Following Girault

& Scott [13], we apply a divergence-preserving interpolation ju : V → V div
h . It

is shown in [13] that the approximation properties (2.6)-(2.7) in Assumption 2.3
remain valid on simplicial isotropic meshes if the right hand side Sobolev norms
are taken on a patch ωM ⊃ M and provided k ≥ d . It is argued in [13] that
the result can be easily extended to quadrilateral/hexahedral meshes and in this
case to k = 2, d = 3.

We obtain the following quasi-optimal semidiscrete error estimate for the LPS-
model (2.11) with vanishing pressure jump terms, i.e., with ih ≡ 0.

Theorem 4.1: Let Assumption 2.1-2.5 be valid. Assume that uh(0) = juu0. If
u ∈ [L∞(0, T ;W 1,∞(Ω))]d, then we obtain for the discrete velocity approximation
eh = uh − juu of the LPS-method (2.11):

‖eh‖2
L∞(0,t);L2(Ω)) +

∫ t

0

|||eh(τ)|||2LPS dτ

≤ C
∑
M

∫ t

0

eCG(u)(t−τ)
[
(Ek + τM |uM |2 + γMd)‖∇ηu(τ)‖2

L2(M)

+

(
Ro

(
1 +

h2
M‖u‖2

L∞(M)

Ek

)
h−2
M + αM |ωM |2

)
‖ηu(τ)‖2

L2(M)

+ ‖∂tηu(τ)‖2
L2(M) + τM |uM |2‖κM(∇u)(τ)‖2

L2(M)

+ min
( d

Ek
;

1

γM

)
‖ηp(τ)‖2

L2(M) + αM |ωM |2‖κM(u)‖2
L2(M)

]
dτ

(4.3)

with (ηu, ηp) = (u− juu, p− jpp) and the Gronwall constant

CG(u) = 1 + CRo|u|L∞(0,T ;W 1,∞(Ω)) + ChRo‖u‖2
L∞(0,T ;W 1,∞(Ω)) (4.4)

where h := maxM hM .

Proof: Subtracting (2.11) from (2.1) with Vh = (eh, 0) ∈ V div
h × Qh and using

(4.1) leads to the error equation

0 = (∂t(u− uh), eh) + aG(U − Uh,Vh) + c(u;u, eh)− c(uh;uh, eh)
− sh(uh;uh, eh)− th(uh;uh, eh)− ah(ω,uh,ω, eh)

= (∂tηu, eh) + (∂teh, eh) + aG(A, (eh, 0)) + aG(Eh, (eh, 0))

+ c(u;u, eh)− c(uh;uh, eh) + sh(uh; eh, eh)− sh(uh; juu, eh)
+ th(uh; eh, eh)− th(uh; juu, eh) + ah(ω, eh,ω, eh)− ah(ω, juu,ω, eh).
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Reordering the terms and using (3.1) implies

1

2
∂t‖eh‖2

L2(Ω) + |||eh|||2LPS
= −(∂tηu, eh)− aG(A, (eh, 0)) + c(uh;uh, eh)− c(u;u, eh)

+ sh(uh; juu, eh) + th(uh; juu, eh) + ah(ω, juu,ω, eh)

= −(∂tηu, eh)− Ek(∇ηu,∇eh)− (2ω × ηu, eh) + (ηp,∇ · eh)
+ c(uh;uh, eh)− c(u;u, eh)− sh(uh;ηu, eh)− th(uh;ηu, eh)
+ sh(uh;u, eh)− ah(ω,η,ω, eh) + ah(ω,u,ω, eh)

where we used ∇ · u = 0. Some of the right hand side terms can be bounded as
follows:

(∂tηu, eh) ≤ ‖∂tηu‖L2(Ω)‖eh‖L2(Ω) ≤
1

2
‖∂tηu‖2

L2(Ω) +
1

2
‖eh‖2

L2(Ω)

Ek(∇ηu,∇eh) ≤
√
Ek‖∇ηu‖L2(Ω)|||eh|||LPS,

(ηp,∇ · eh) ≤
(∑

M

min
( d

Ek
;

1

γM

)
‖ηp‖2

L2(M)

) 1
2 |||eh|||LPS,

sh(uh;ηu, eh) ≤
(∑

M

τM |uM |2‖∇ηu‖2
L2(M)

) 1
2 |||eh|||LPS,

th(uh;ηu, eh) ≤
(∑

M

γMd‖∇ηu‖2
L2(M)

) 1
2 |||eh|||LPS

sh(uh;u, eh) ≤
(∑

M

τM |uM |2‖κM(∇u)‖2
L2(M)

) 1
2 |||eh|||LPS

ah(ω,u,ω, eh) ≤
(∑

M

αM |ωM |2‖κM(u)‖2
L2(M)

) 1
2 |||eh|||LPS

ah(ω,η,ω, eh) ≤
(∑

M

αM |ωM |2‖ηu‖2
L2(M)

) 1
2 |||eh|||LPS.
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This implies

1

2
∂t‖eh‖2

L2(Ω) + |||eh|||2LPS

≤ 1

2
‖∂tηu‖2

L2(Ω) +
1

2
‖eh‖2

L2(Ω) + c(uh;uh, eh)− c(u;u, eh)

+ |||eh|||LPS
[√

Ek‖∇ηu‖L2(Ω) +
(∑

M

τM |uM |2‖∇ηu‖2
L2(M)

) 1
2

+
(∑

M

γMd‖∇ηu‖2
L2(M)

) 1
2

+
(∑

M

min
( d

Ek
;

1

γM

)
‖ηp‖2

L2(M)

) 1
2

+
(∑

M

τM |uM |2‖κM(∇u)‖2
L2(M)

) 1
2

+
(∑

M

αM |ωM |2‖ηu‖2
L2(M)

) 1
2

+
(∑

M

αM |ωM |2‖κM(u)‖2
L2(M)

) 1
2
]
,

thus via Young’s inequality

1

2
∂t‖eh‖2

L2(Ω) + (1− 2ε)|||eh|||2LPS

≤ 1

2
‖∂tηu‖2

L2(Ω) +
1

2
‖eh‖2

L2(Ω) +
[
c(uh;uh, eh)− c(u;u, eh)

]
+

7

8ε

∑
M

[(
Ek + τM |uM |2 + γMd

)
‖∇ηu‖2

L2(M)

+ min
( d

Ek
;

1

γM

)
‖ηp‖2

L2(M) + τM |uM |2‖κM(∇u)‖2
L2(M)

+ αM |ωM |2‖ηu‖2
L2(M) + αM |ωM |2‖κM(u)‖2

L2(M)

]
.

(4.5)

Lemma 7.1 in [1] yields for the convective terms:

(c(u;u, eh)− c(uh;uh, eh))/Ro

≤ 1

4ε

∑
M

1

h2
M

(
1 +

h2
M‖u‖2

L∞(M)

Ek

)
‖ηu‖2

L2(M) + 3ε|||ηu|||2LPS + 4ε|||eh|||2LPS

+
[(
|u|W 1,∞(Ω) +

(
εh2 +

C

ε
max
M

h2

γM

)
|u|2W 1,∞(Ω)

]
‖eh‖2

L2(Ω)

(4.6)

assuming γM ≥ ChM .
We summarize (4.5)-(4.6) and set ε = 1

12
. Together with Assumption 2.5 we
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obtain

∂t‖eh‖2
L2(Ω) + |||eh|||2LPS

≤
[
1 + 2Ro|u|W 1,∞(Ω) +RoCh|u|2W 1,∞(Ω)

]
‖eh‖2

L2(Ω) + ‖∂tηu‖2
L2(Ω)

+
∑
M

[
43

2
(Ek + τM |uM |2 + γMd)‖∇ηu‖2

L2(M)

+ 21αM |ωM |2‖κM(u)‖2
L2(M)

+

(
6
Ro

h2
M

(
1 +

h2
M‖u‖2

L∞(M)

Ek

)
+ 21αM |ωM |2‖

)
‖ηu‖2

L2(M)

+21τM |uM |2‖κM(∇u)‖2
L2(M) + 21 min

( d

Ek
;

1

γM

)
‖ηp‖2

L2(M)

]
.

Application of the Gronwall Lemma for ‖eh‖2
L2(Ω) gives (4.3). Note that the

initial error ‖eh(0)‖L2(Ω) vanishes for uh(0) = juu0. 2

Remark: The independence of the Gronwall constant CG(u) on the Reynolds
number ReΩ heavily relies on the lower bound γM ≥ Ch of the grad-div term
parameter, together with the assumption u ∈ [L∞(0, T ;W 1,∞(Ω)]d. The analysis
uses at some places ideas of [9]. For Ro = 0 we are in the Stokes case and the
Gronwall constant is independent of the Reynolds number no matter how γ is
chosen.

Corollary 4.1: Let Assumption 2.1-2.5 be valid and assume for the regularity
of the smooth solutions u ∈ [L∞(0, T ;W 1,∞(Ω))]d, p ∈ L2(0, T ;Q) and ∂tu ∈
[L2(0, T ;L2(Ω))]d. Then estimate (4.3) implies strong velocity convergence of the
LPS-method in [L∞(0, T ;L2(Ω)) ∩ L2(0, T ;V )]d.

Proof: For u ∈ L2(0, T ;V ) and p ∈ L2(0, T ;Q), a density argument gives

(Ek + τM |uM |2 + γMd)‖∇ηu‖2
L2(M) → 0, hM → 0,

max
(
Ro;Ro

‖u‖2
L∞(M)h

2
M

Ek
;αM‖ω‖2

L∞(M)h
2
M

) 1

h2
M

‖ηu‖2
L2(M) → 0, hM → 0,

min
( d

Ek
;

1

γM

)
‖ηp‖2

L2(M) → 0, hM → 0,

‖∂tηu|||2L2(M) → 0, hM → 0,

τM |uM |2‖κM(∇u)‖2
L2(M) → 0, hM → 0,

αM |ωM |2‖κM(u)‖2
L2(M) → 0, hM → 0.

Under the assumption of u ∈ [L∞(0, T ;W 1,∞(Ω))]d the exponent CG(u) of the
Gronwall factor remains uniformly bounded for h→ 0. This fact and (4.3) imply
strong convergence for u in [L∞(0, T ;L2(Ω)) ∩ L2(0, T ;V )]d. 2
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Corollary 4.2: Let Assumption 2.1-2.5 be valid and assume a smooth solution
of the time-dependent Navier-Stokes-problem according to

u ∈ [L∞(0, T ; [W 1,∞(Ω)) ∩ L2(0, T ; [W k+1,2(Ω))]d,

∂tu ∈ [L2(0, T ;W k,2(Ω))]d, p ∈ L2(0, T ;W k,2(Ω)).

Set uh(0) = juu0 and ih ≡ 0. Then we obtain for 0 ≤ t ≤ T the semidiscrete
a-priori estimate for the approximation eh = uh−juu of the LPS-method (2.11):

‖eh‖2
L∞(0,t);L2(Ω)) +

∫ t

0

|||eh(τ)|||2LPS dτ

≤ C
∑
M

h2k
M

∫ t

0

eCG(u)(t−τ)

[
min

( d
Ek

,
1

γM

)
|p(τ)|2Wk,2(ωM )

+ (Ek +Ro+
Ro

Ek
h2
M‖u‖2

L∞(M) + τM |uM |2

+ dγM + αM‖ω‖2
L∞(M)h

2
M

)
|u(τ)|2Wk+1,2(ωM )

+
(
τM |uM |2 + αMh

2
M‖ω‖2

L∞(M)

)
h

2(s−k)
M |u(τ)|2W s+1,2(ωM )

+|∂tu(τ)|2Wk,2(ωM )

]
dτ

(4.7)

where s ∈ {0, · · · , k}.

Proof: Interpolation results in V div
h ×Qh according to Assumption 2.3 provide∑

M

(Ek + τM |uM |2 + dγM)‖∇ηu(τ)‖2
L2(M) +

∑
M

min
( d
Ek

,
1

γM

)
‖ηp(τ)‖2

L2(M)

+
∑
M

(
(Ro+

Ro

Ek
h2
M‖u‖2

L∞(M))h
−2
M + αM‖ω‖2

L∞(M)

)
‖ηu(τ)‖2

L2(M)

≤ C
∑
M

h2k
M

(
Ek +Ro+

Ro

Ek
h2
M‖u‖2

L∞(M) + τM |uM |2

+ dγM + αM‖ω‖2
L∞(M)h

2
M

)
|u(τ)|2Wk+1,2(ωM )

+ C
∑
M

h2k
M min

( d

Ek
;

1

γM

)
‖p(τ)‖2

Wk,2(ωM ) ds

and

‖∂tηu‖2
L2(Ω) ≤ C

∑
M

h2k
M |∂tu|2Wk,2(ωM ),

τM |uM |2‖κM(∇u)‖2
L2(M) ≤ C

∑
M

τM |uM |2h2s
M |u|2W s+1,2(ωM ),

αM‖ω‖2
L∞(M)‖κM(u)‖2

L2(M) ≤ C
∑
M

αMh
2
M‖ω‖2

L∞(M)h
2s
M |u|2W s+1,2(ωM ).

Using Assumption 2.5, this concludes the proof. 2
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Remark: The error estimate (4.7) does not blow up if

Ro

Ek
h2
M‖u‖2

L∞(M) ≤ C (4.8)

In dimensional form this condition corresponds to

Re2
M

Re
=
h2
M‖u‖2

L∞(M)

ν2

ν

LrefUref
≤ C (4.9)

which gives a (mild) restriction on the local mesh width hM . Thus we obtain
a method of order k in the sense of (4.2) provided that ReM ≤ C/

√
Re. In

particular, there is no restriction if Ro = 0. 2

Now we are in the position to derive bounds of the stabilization parameters.
By formula (4.7) a possible choice for the set of stabilization parameters (τM)M ,
(γM)M and (αM)M is given by

0 ≤ τM(uM) ≤ (Ek +Ro)τ0
h

2(k−s)
M

|uM |2
,

0 ≤ αM(ωM) ≤ (Ro+ Ek)α0
h

2(k−s−1)
M

|ωM |2
,

(Ek + h)γ0 ≤ γM ≤ (Ek +Ro)γ0

(4.10)

with s ∈ {0, 1, . . . , k} and tuning constants τ0, γ0, α0 = O(1). Let us remember
the choice τM |bM |2 ≤ Chk−sM and γ ∼ 1 in [7], Table 1, for the Oseen problem.

A large range 0 ≤ τM ≤ C(Ek + Ro)h
2(k−s)
M /|uM |2 is allowed, in particular

τM ≡ 0, thus showing a certain robustness of the grad-div stabilized Galerkin
FEM with inf-sup stable interpolation. Nevertheless, the numerical experiments
in Section 6 will show that the choice s = k is appropriate (at least for boundary
layer flows).

The approach of this subsection is applicable to almost all LPS-variants. We
summarize possible variants of the triples V h/Qh/DM with t ∈ {0, . . . , k − 1}:
• One-level methods:
Pk/Pk−1/Pt, Qk/Qk−1/Qt, P+

k /P−(k−1)/Pt, Qk/P−(k−1)/Pt
• Two-level methods:
Pk/Pk−1/Pt, Qk/Qk−1/Qt, P+

k /P−(k−1)/Pt, Qk/P−(k−1)/Pt .

Remark: A-priori error estimate of the pressure can be derived following the lines
in [14]. Unfortunately, one obtains an error reduction as a result of non-optimal
estimates of ∂teh, see also [9].
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4.2. Methods of Order k with Compatibility Condition

The restriction Ro
Ek
h2
M‖u‖2

L∞(M) ≤ C in (4.8) stems from the estimate of the
advective term in the analysis of Theorem 4.1. An improvement relies on the
following

Assumption 4.2: Let Yh,k(M) = {vh|M : vh ∈ Yh,k, vh = 0 on Ω \M} and

∃βu > 0: inf
wh∈DM

sup
vh∈Yh,k(M)

(vh,wh)M
‖vh‖L2(M)‖wh‖L2(M)

≥ βu. (4.11)

Lemma 4.1: Let Assumption 4.2 be valid. Then there exists an interpolation
operator i : V → V h s.t. for 1 ≤ l ≤ k + 1

(v − iv,wh) = 0 ∀wh ∈ Du
h ∀v ∈ V

‖v − iv‖L2(M) + hM |v − iv|W 1,2(M) ≤ ChlM‖v‖W l,2(ωM ) ∀v ∈ V ∩ [W l,2(Ω)]d.

(4.12)

Proof: See Matthies et al. [10]. 2

Condition (4.11) has two implications: At first, a careful selection of the
discrete spaces V h and DM is required. Secondly, the interpolation operator
i : V → V h does not act in general in V div

h . As a consequence one has to
modify the analysis of Theorem 4.1. In particular, a critical mixed term has to
be handled. For discontinuous pressure space Qh we have to include the pressure
jump term ih.

Theorem 4.3: Let Assumption 2.1-4.2 be valid and assume for the regularity of
the smooth solutions u ∈ [L∞(0, T ;W 1,∞(Ω))]d. Moreover, consider a continuous
or discontinuous discrete pressure space Qh = Pk−1 or Qh = P−(k−1). Then we
obtain for 0 ≤ t ≤ T the error estimate

‖eh‖2
L∞(0,t);L2(Ω)) +

∫ t

0

|||Eh(τ)|||2LPS dτ

≤ C
∑
M

∫ t

0

eCG(u)(t−τ)
[
(Ek + τM |uM |2 + dγM)‖∇ηu(τ)‖2

L2(M)

+

(
Ro

h2
M

+
Ro

τM
+ αM |ωM |2

)
‖ηu(τ)‖2

L2(M) + min
( d
Ek

,
1

γM

)
‖ηp(τ)‖2

L2(M)

+ τM |uM |2‖κM(∇u)(τ)‖2
L2(M) + αM |ωM |2‖κM(u)‖2

L2(M)

+‖∂tηu(τ)‖2
L2(M) +

∑
E⊂∂M

(
1

φE
‖ηu(τ) · nE‖2

L2(E) + φE‖[ηp]‖2
L2(E)

)]
dτ

(4.13)
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with (ηu, ηp) = (u− iu, p− jpp) and Gronwall constant

CG(u) = 1 + CRo|u|L∞(0,T ;W 1,∞(Ω)) + CRoh‖u‖2
L∞(0,T ;W 1,∞(Ω))

+ CRomax
M
‖
√
τMuh‖2

L∞(0,T ;W 1,∞(M))

(4.14)

where h := maxM hM .

Proof: We modify the proof of Theorem 4.1. Eventually, the pressure jump
stabilization term ih(·, ·) is included, in particular in the expression ||| · |||LPS.
The first estimate (4.5) has to be modified as follows:

1

2
∂t‖eh‖2

L2(Ω) + |||Eh|||2LPS
= −(∂tηu, eh)− Ek(∇ηu,∇eh)− (2ω × ηu, eh) + (ηp,∇ · eh)− (rh,∇ · ηu)

+ c(uh;uh, eh)− c(u;u, eh)− sh(uh;ηu, eh)− ih(ηp, rh)− th(uh;ηu, eh)
+ sh(uh;u, eh)− ah(ω,η,ω, eh) + ah(ω,u,ω, eh).

Note that the (critical) mixed term (rh,∇ ·ηu) does not vanish in general. Most
of the right hand side terms can be bounded as in the proof of Theorem 4.1. The
modifications due to Assumption 4.2 are as follows.

Lemma 7.2 in [1] provides a refined estimate of the advective error term:

(c(u;u, eh)− c(uh;uh, eh))/Ro

≤ 1

2ε

∑
M

( 1

τM
+

1

2h2
M

)
‖ηu‖2

L2(M) + 3ε|||ηu|||2LPS + 4ε|||eh|||2LPS

+ C
[
|u|W 1,∞(Ω) + max

M

((
εh2 + ετM +

1

ε
max
M

h2

γM

)
|u|2W 1,∞(M)

)]
‖eh‖2

L2(Ω).

again assuming γM ≥ ChM .
For the critical mixed error term, integration by parts gives

−(rh,∇ · ηu) = (∇rh,ηu)−
∑
E∈Eh

([rh]E,ηu · nE)E (4.15)

Assume that ∇rh|M ∈ [Pk−2(M)]d which is possible for Qh = Pk−1 or Qh =
P−(k−1). Then, the orthogonality condition of Lemma 4.1 is applicable, resulting
in (∇rh,ηu) = 0. In case of continuous discrete pressure Qh = Pk−1, we have
[rh]E = 0 and thus (rh,∇ · ηu) = 0. For discontinuous discrete pressure Qh =
P−(k−1), we take advantage of the stabilization term jh:

(∇rh,ηu)−
∑
E∈Eh

([rh]0,E,ηu · nE)E ≤
(∑

E

1

φE
‖ηu · nE‖2

L2(E)

) 1
2 |||(eh, rh)|||LPS.



D. Arndt and G. Lube: Navier-Stokes in Rotating Frames 19

Moreover, we have

sh(uh;A,A) + th(uh;A,A) + ih(A,A)

≤
∑
M

(τM |uM |2 + dγM)‖∇ηu‖2
L2(M) +

∑
E

φE‖[ηp]‖2
L2(E).

Summarizing all steps, we obtain the modified estimate

∂t‖eh‖2
L2(Ω) + |||Eh|||2LPS

≤
[
1 + 2|u|W 1,∞(Ω) + C(h+ max

M
τM)‖u‖2

W 1,∞(Ω)

]
‖eh‖2

L2(Ω) + ‖∂tηu‖2
L2(Ω)

+ C
∑
M

[
(Ek + τM |uM |2 + γMd)‖∇ηu‖2

L2(M) + αM‖ω‖2
L∞(M)‖κM(u)‖2

L2(M)

+

(
Ro

h2
M

+
Ro

τM
+ αM‖ω‖2

L∞(M)

)
‖ηu‖2

L2(M)

+τM |uM |2‖κM(∇u)‖2
L2(M) + min

( d

Ek
;

1

γM

)
‖ηp‖2

L2(M)

]
+ C

∑
E

[
1

φE
‖ηu · nE‖2

L2(E) + φE‖[ηp]‖2
L2(E)

]
.

(4.16)

Application of the Gronwall Lemma for ‖eh‖2
L2(Ω) gives (4.3). Note that the

initial error ‖eh(0)‖L2(Ω) vanishes for uh(0) = juu0. 2

Finally, we have the following a-priori error estimate.

Corollary 4.3: Let the assumptions of Theorem 4.3 be valid. Then we obtain

‖eh‖2
L∞(0,T );L2(Ω)) +

∫ t

0

|||Eh(τ)|||2LPS dτ

≤ C
∑
M

h2k
M

∫ t

0

eCG(u)(t−τ)
[
|∂tu(τ)|2Wk,2(ωM )

+
(

min
( 1

Ek
,

1

γM

)
+
φE
hE

)
|p(τ)|2Wk,2(ωM )

+
(
Ro+ Ek + τM |uM |2 + dγM

+Ro
h2
M

τM
+
hE
φE

+ αMh
2
M‖ω‖2

L∞(M)

)
|u(τ)|2Wk+1,2(ωM )

+
(
τM |uM |2 + αMh

2
M‖ω‖2

L∞(M)

)
h

2(s−k)
M |u(τ)|2W s+1,2(ωM )

]
dτ

(4.17)

From [7, 10] we obtain the following variants for V h/Qh/DM for LPS-methods
of order k with the crucial inf-sup condition (4.11) in Assumption 4.2:

• One-level methods:
P+
k /Pk−1/Pk−1, P+

k /P−(k−1)/Pk−1, Qk/P−(k−1)/Pk−1
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• Two-level methods:
Pk/Pk−1/Pk−1, Qk/Qk−1/Pk−1, P+

k /P−(k−1)/Pk−1, Qk/P−(k−1)/Pk−1 ,

thus giving the restriction s = k for the projection space.

Remark: Regarding the stabilization parameters, we obtain from formula (4.17)
that a method of order k results from

τ0h
2
M ≤ τM(uM) ≤ (Ro+ Ek)

τ0

|uM |2
Ekγ0 ≤ γM ≤ (Ek +Ro)γ0

0 ≤ αM(ωM) ≤ α0(Ro+ Ek)

h2
M‖ω‖2

L∞(M)

φ0h ≤ φE ≤
φ0

γM
h

(4.18)

with tuning constants τ0, γ0, α0, φ0 = O(1). The remarks in Subsec. 4.2 on the
choice of γM remain valid. For discontinuous pressure spaces Qh we may set
φ0 = O(1), whereas φ0 = 0 for continuous pressure spaces Qh. Note that in
(4.18) τ0 and γ0 may still depend on uM . Moreover, a deterioration of the
Gronwall constant CG(u) is not possible since, according to Assumption 2.5,
we set τM(uM) = 0 if uM = 0.

4.3. Methods of order k + 1
2 with Compatibility Condition

The analysis of Subsec. 4.2 suggests to search for methods of order k + 1
2

in
the interesting case Ek ≤ Ch. As in [7] we will focus on one-level methods, i.e.
Mh = Th.

The definition of the LPS-scheme is the same as in Subsec. 4.2 with the
exception of discrete pressure spacesQh of order k. From [7] we have the following
variants for V h/Qh/DM for LPS-methods with assumption Assumption 2.5:

• One-level methods:
P+
k /Pk/Pk−1 (k ≥ 1), P+

k /P−k/Pk−1 (k ≥ d), Q+
k /P−k/Pk−1 (k ≥ 2).

For brevity we give here only the final result. Please note that the result of
Theorem 4.3 remains valid with the exception that the factor multiplying the
seminorm |u(τ)|2

Wk+1,2(ωM )
has to be replaced by Ek + hM + τM |uM |2 + dγM +

Ro
h2M
τM

+ hE
φE

+ αMh
2
M‖ω‖2

L∞(M).

Corollary 4.4: Let Assumption 2.1-4.2 be valid and assume for the regu-
larity of the smooth solutions u ∈ [L∞(0, T ;W 1,∞(Ω))]d. Moreover, consider
continuous or discontinuous discrete pressure Qh = Pk or Qh = P−k. Then, for
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0 ≤ t ≤ T , we obtain the error estimate

‖eh‖2
L∞(0,t);L2(Ω)) +

∫ t

0

|||Eh(τ)|||2LPS dτ

≤ C
∑
M

h2k
M

∫ t

0

eCG(u)(t−τ)

[
h2
M min

( 1

Ek
,

1

γM

)
|p(τ)|2Wk,2(ωM )

+ h2
M |∂tu(τ)|2Wk+1,2(ωM )

+
(
Ek + hM + τM |uM |2 + dγM

+Ro
h2
M

τM
+
hE
φE

+ αMh
2
M‖ω‖2

L∞(M)

)
|u(τ)|2Wk+1,2(ωM )

]
dτ

(4.19)

with the same Gronwall constant as in Theorem 4.3.

Remark: For the stabilization parameters (4.19) implies a modified design

τM(uM) = τ0 min
( hM
|uM |2

;Ro
h2
M

Ek

)
γM = γ0hM

0 ≤ αM(ωM) ≤ α0

hM‖ω‖L∞(M)

φE = φ0

(4.20)

with tuning constants α0, τ0, γ0 = O(1). For discontinuous pressure spaces Qh,
we set again φ0 = O(1), whereas φ0 = 0 for continuous pressure spaces Qh. In
case of Ek ≤ Ch, this gives a method of order k + 1

2
in the sense of [10].

From formula (4.19) in Subsec. 4.3 we obtain via equilibration the condition

(Ek + γM)‖u‖2
Wk+1,2(ωM ) ∼ h2

M min
( 1

Ek
,

1

γM

)
‖p‖2

Wk,2(ωM ). (4.21)

In principle, the situation is as stated in Subsec. 4.1, but is crucially relaxed due
to the factor h2

T on the right hand side. This motivates the choice (4.20).

5. Time Discretization

In order to fully discretize our model we use splitting method called rotational
pressure-correction projection. This approach has been analyzed by Guermond
and Shen in [2] is based on the backward differentiation formula of second order
(BDF2). We define the operator Dt to abbreviate the discrete time derivative by

Dtu
n
ht :=

3unht − 4un−1
ht + un−2

ht

2∆t
. (5.1)

The fully discretized scheme then reads(
3ũnht − 4un−1

ht + un−2
ht

2∆t
,vh

)
+ Ek(∇ũnht,∇vh)

+
Ro

2

[
((ũnht · ∇)ũnht,vh)− ((ũnht · ∇)vh, ũ

n
ht)
]

+ 2(ω × ũnht,vh)

+ ah(ω
n, ũnht,ω

n,vh) + sh(ũ
n
ht; ũ

n
ht,vh) + th(ũ

n
ht; ũ

n
ht,vh)

= (fn,vh)− (∇pn−1
ht ,vh)

(5.2)
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3unht − 3ũnht

2∆t
+∇φnht,∇q

)
= 0

pnht = φnht + pn−1
ht − πp(Ek∇ · ũ

n
ht)

(5.3)

By eliminating the (weakly) solenoidal field ũnht in (5.2) we arrive at the following
scheme that is used in the implementation

(Dtũ
n
ht,vh) + Ek(∇ũnht,∇vh) +

Ro

2

[
((ũnht · ∇)ũnht,vh)− ((ũnht · ∇)vh, ũ

n
ht)
]

+ 2(ω × ũnht,vh) + ah(ω
n, ũnht,ω

n,vh)

+ sh(ũ
n
ht; ũ

n
ht,vh) + th(ũ

n
ht; ũ

n
ht,vh)

= (fn,vh) +

(
−∇pn−1

ht −
4

3
∇φn−1

ht +
1

3
∇φn−2

ht ,vh

)
.

(5.4)

5.1. Strategy and the Auxiliary Problem

Since we already have an estimate for the error induced by the spatial dis-
cretization we want to consider the error that appears when discretizing the
spatial approximation in time. By the triangle inequality the total error is then
bounded as

‖U −Uht‖ ≤ ‖U −Uh‖+ ‖Uh −Uht‖ (5.5)

Since the convective term normally does not introduce any severe problems
(according to Guermond) in the time discretization, we restrict the analysis at
this point to the Stokes case, i.e. Ro = 0 and τM = 0. Additionally, we assume
that ω is constant with respect to time. For the Navier-Stokes case in inertial
frames of references we refer to [15].
The fully discretized quantities ũnht,u

n
ht, p

n
ht solve the problem(

3ũnht − 4un−1
ht + un−2

ht

2∆t
,vh

)
+ Ek(∇ũnht,∇vh) + 2(ω × ũnht,vh)

+ ah(ω
n, ũnht,ω

n,vh) + th(ũ
n
ht; ũ

n
ht,vh) = (fn,vh)− (∇pn−1

ht ,vh)

(5.6)

(
3unht − 3ũnht

2∆t
+∇φ̃nht,∇qh

)
= 0

pnht = φ̃nht + pn−1
ht − πp(Ek∇ · u

n
ht)

(5.7)

5.2. Initialization of the Auxiliary Problem

For initializing the algorithm we use a BDF1-scheme defined as follows(
ũ1
ht − uh(0)

∆t
,vh

)
+ Ek(∇ũ1

ht,∇vh) + 2(ω1 × ũ1
ht,vh)

+ ah(ω
1, ũ1

ht,ω
1,vh) + th(ũ

1
ht,vh) = (−∇ph(0) + f 1,vh)

(5.8)
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(
u1
ht − ũ

1
ht

∆t
,∇qh

)
+ (∇(p1

ht − ph(0)),∇qh) = 0. (5.9)

Using the abbreviations e1
u := uh(t1) − u1

ht, ẽ
1
u := uh(t1) − ũ1

ht and e1
p :=

ph(t1)− p1
ht we can state the estimates for the initial errors.

Lemma 5.1: The initial error due to time discretization can be bounded as

‖ẽ1
u‖2

0 + ‖ẽ2
u‖2

0 + ‖∇ẽ1
u‖2

0 + ‖∇ẽ2
u‖2

0 ≤ C(∆t)4

‖∇e1
p‖2

0 + ‖∇e2
p‖2

0 ≤ C(∆t)2 (5.10)

Proof: The error equation corresponding to (5.8) reads:(
ẽ1

∆t
,vh

)
+ Ek(∇ẽ1,∇vh) + th(ẽ

1,vh) + 2(ω1 × ẽ1
u,vh)

+ ah(ω
1, ẽ1

u,ω
1,vh) + (∇(ph(t1)− ph(0)),vh)

=

(
uh(t1)− uh(0)

∆t
− ∂tuh(t1),vh

)
=: (R1,vh)

(5.11)

Testing this equation with ẽ1
u yields

‖ẽ1
u‖2

0 + Ek∆t‖∇ẽ1
u‖2

0 + γ∆t‖∇ · ẽ1‖2
0 + ∆t

∑
M

(
αM‖κM(ω1 × ẽ1

u)‖2
0,M

)
≤ ∆tmin{(‖(∇(ph(0)− ph(t1))‖0 + ‖R1‖0)‖ẽ1

u‖0,

(‖ph(0)− ph(t1)‖0 + ‖R1‖−1)‖∇ẽ1
u‖0}

≤ C(∆t)2 min{‖ẽ1
u‖0, ‖∇ẽ1

u‖0}
(5.12)

and hence ‖ẽ1
u − ẽ

0
u‖0 = ‖ẽ1

u‖0 ≤ C(∆t)2. Testing (5.11) with ∆ẽ1
u gives

‖∇ẽ1
u‖2

0 + Ek∆t‖∆ẽ1
u‖2

0 + γ∆t‖∇∇ · ẽ1‖0 + ∆t
∑
M

(
αM‖ω1

M ×∇ẽ
1
u‖2

0,M

)
≤ ∆tmin{(‖(∆(ph(0)− ph(t1))‖0 + ‖∇R1‖0)‖∇ẽ1

u‖0,

(‖(∇(ph(0)− ph(t1))‖0 + ‖R1‖0)‖∆ẽ1
u‖0}

≤ C(∆t)2 min{‖∇ẽ1
u‖0, ‖∆ẽ1

u‖0}
(5.13)

and this provides us with ‖∇ẽ1
u‖0 ≤ C(∆t)2, ‖∆ẽ1

u‖0 ≤ C∆t.
Next we consider the error equation due to the projection step (5.9)(
e1
u − ẽ

1
u

∆t
,∇qh

)
+ (∇(ph(t1)− p1

ht),∇qh) = (∇(ph(t1)− ph(0)),∇qh). (5.14)
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Choosing qh = ph(t1)− p1
ht we arrive at

∆t‖∇(ph(t1)− p1
ht)‖2

0 ≤ (‖ẽ1
u‖0 + ∆t‖(∇(ph(0)− ph(t1))‖0)‖∇(ph(t1)− p1

ht)‖0.
(5.15)

where we used that e1 is weakly solenoidal. Hence ‖∇(ph(t1) − p1
ht)‖0 ≤ C∆t

holds. Testing (5.14) with e1
u gives

‖e1
u‖2

0 ≤ (‖ẽ1
u‖0 + ∆t‖(∇(ph(0)− ph(t1))‖0)‖e1

u‖0 (5.16)

and finally ‖e1
u‖0 ≤ C(∆t)2. Testing (5.14) with −∆e1

u gives

‖∇e1
u‖0 ≤ (‖∇ẽ1

u‖0 + ∆t‖(∆(ph(0)− ph(t1))‖0) ≤ C(∆t)2. (5.17)

Next, we need an estimate for ẽ2
u. Applying the same technique for n = 2 we

get

(
3ẽ2

u − 3ẽ1
u

2∆t
,vh) + Ek(∇(ẽ2

u − ẽ
1
u),∇vh) + ah(ω

2, ẽ2
u − ẽ

1
u,ω

2,vh)

+ th(ẽ
2 − ẽ1,vh) + 2(ω2 × (ẽ2

u − ẽ
1
u),vh)

= R2 +∇(p1
ht − ph(t2),vh)− Ek(∇(ẽ1

u − ẽ
0
u),∇vh) + (

3e1
u − 3ẽ1

u

2∆t
,vh)

+ (
e1
u − e0

u

2∆t
,vh) + ah(ω

2, ẽ2
u − ẽ

1
u,ω

2,vh) + 2((ω1 − ω2)× ẽ1
u,vh)

= R2 − Ek(∇(ẽ1
u − ẽ

0
u),∇vh) + (

e1
u − e0

u

2∆t
,vh) + (

3

2
(∇(p1

ht − p0
ht),vh)

+∇(p1
ht − ph(t2),vh) + ah(ω

2, ẽ2
u − ẽ

1
u,ω

2,vh) + 2((ω1 − ω2)× ẽ1
u,vh)

= R2 − Ek(∇(ẽ1
u − ẽ

0
u),∇vh) + (

e1
u − e0

u

2∆t
,vh) + (∇(

5

2
p1
ht −

3

2
p0
ht − ph(t2)),vh)

+ ah(ω
2, ẽ2

u − ẽ
1
u,ω

2,vh) + 2((ω1 − ω2)× ẽ1
u,vh)

= R2 − Ek(∇(ẽ1
u − ẽ

0
u),∇vh) + (

e1
u − e0

u

2∆t
,vh) + (∇(

5

2
(p1
ht − ph(t1)),vh)

+ (∇(
5

2
ph(t1)− 3

2
ph(t0)− ph(t2)),vh) + ah(ω

2, ẽ2
u − ẽ

1
u,ω

2,vh)

+ 2((ω1 − ω2)× ẽ1
u,vh)

≤ C∆tmin{‖vh‖0, ‖∇vh‖0}
⇒ ‖ẽ2

u − ẽ
1
u‖0 ≤ C(∆t)2 Ek‖ẽ2

u − ẽ
1
u‖1 ≤ C(∆t)

(5.18)

Similarly as above we derive for the pressure error

∆t‖∇(ph(t2)− p2
ht)‖2

0 ≤ (‖ẽ2
u‖0 + ∆t‖(∇(p1

ht − ph(t2))‖0)‖∇(ph(t2)− p2
ht)‖0

≤ C(∆t)2‖∇(ph(t2)− p2
ht)‖0

and therefore ‖∇e2
p‖ ≤ C(∆t). 2
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5.3. Velocity Projection Error

For the following estimates we define the errors

enu := uh(tn)− unht ẽnu := uh(tn)− ũnht
ψk := ph(tn+1)− pnht enp := ph(tn)− pnht

and the increment operator

δta
n := an − an−1.

Now, we can proof a first result for the error between the error for the auxiliary
velocity and its projection:

Lemma 5.2: For all 1 ≤ m ≤ N the difference between the velocity errors can
be bounded as

‖emu − ẽ
m
u ‖0 ≤ C(∆t)2.

Proof: The error equation due to the diffusion step (5.6) reads(
3ẽnu − 4en−1

u + en−2
u

2∆t
,vh

)
+ Ek(∇ẽnu,∇vh) + 2(ωn × ẽnu,vh)

+ ah(ω
n, ẽnu,ω

n,vh) + th(ẽ
n
u,vh) = (Rn,vh)− (∇ψn−1,vh).

(5.19)

We note the identities

2(ωn × ẽnu,vh)− 2(ωn−1 × ẽn−1
u ,vh)

= 2(δtω
n × ẽn−1

u ,vh) + 2(ωn × δtẽnu,vh),
(5.20)

− ah(ωn, ũnh,ωn,vh) + ah(ω
n−1, ũn−1

h ,ωn−1,vh)

= ah(ω
n, ẽnu,ω

n,vh)− ah(ωn−1, ẽn−1
u ,ωn−1,vh)

− ah(ωn,uh(tn),ωn,vh) + ah(ω
n−1,uh(tn−1),ωn−1,vh)

(5.21)

and

ah(ω
n, ẽnu,ω

n,vh)− ah(ωn−1, ẽn−1
u ,ωn−1,vh)

= ah(ω
n, δtẽ

n
u,ω

n,vh) + ah(ω
n, ẽn−1

u ,ωn,vh)

− ah(ωn−1, ẽn−1
u ,ωn−1,vh)

= ah(ω
n, δtẽ

n
u,ω

n,vh) + ah(δtω
n, ẽn−1

u ,ωn,vh)

+ ah(ω
n−1, ẽn−1

u ,ωn,vh)− ah(ωn−1, ẽn−1
u ,ωn−1,vh)

= ah(ω
n, δtẽ

n
u,ω

n,vh) + ah(δtω
n, ẽn−1

u ,ωn,vh)

+ ah(ω
n−1, ẽn−1

u , δtω
n,vh)

(5.22)
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and get therefore

− ah(ωn, ũnht,ωn,vh) + ah(ω
n−1, ũn−1

ht ,ωn−1,vh)

= ah(ω
n, δtẽ

n
u,ω

n,vh) + ah(δtω
n, ẽn−1

u ,ωn,vh)

+ ah(ω
n−1, ẽn−1

u , δtω
n,vh)

− ah(ωn, δtuh(tn),ωn,vh)− ah(δtωn,uh(tn−1),ωn,vh)

− ah(ωn−1,uh(tn−1), δtω
n,vh).

(5.23)

From the fact that the increment operator is linear we get(
3δtẽ

n
u − 4δte

n−1
u + δte

n−2
u

2∆t
,vh

)
+ Ek(∇δtẽnu,∇vh)

+ 2(ωn × δtẽnu,vh) + ah(ω
n, δtẽ

n
u,ω

n,vh)

+ γ(∇ · δtẽnu,∇ · vh)
= (δtR

n,vh)− (∇δtψn−1,vh) + ah(ω
n, δtuh(tn),ωn,vh)

+ ah(δtω
n,uh(tn−1),ωn,vh) + ah(ω

n−1,uh(tn−1), δtω
n,vh)

+ 2(δtω
n × ẽn−1

u ,vh) + ah(δtω
n, ẽn−1

u ,ωn,vh) + ah(ω
n−1, ẽn−1

u , δtω
n,vh).

(5.24)

Now, we can do the same for the error in the projection step (5.7) and get(
3δte

n
u − 3δtẽ

n
u

2∆t
+∇δtenp −∇δtψn−1 − Ek∇πp∇ · δtũnht,∇qh

)
= 0. (5.25)

Next we test the incremental error equation (5.24) with 4∆tδtẽ
n
u to arrive at

(2(3δtẽ
n
u − 4δte

n−1
u + δte

n−2
u ), δtẽ

n
u) + 4∆tEk‖∇δtẽnu‖2

0

+ 4∆tγ‖∇ · δtẽnu‖2
0 + 4∆t

∑
M

αM‖κM(ωn × δtẽnu)‖2
0

= 4∆t((δtp
n
ht −∇δtψn−1, δtẽ

n
u) + ah(ω

n, δtuh(tn),ωn, δtẽ
n
u)

+ ah(δtω
n,uh(tn−1),ωn, δtẽ

n
u) + ah(ω

n−1,uh(tn−1), δtω
n, δtẽ

n
u)

+ 2(δtω
n × ẽn−1

u , δtẽ
n
u) + ah(δtω

n, ẽn−1
u ,ωn, δtẽ

n
u)

+ ah(ω
n−1, ẽn−1

u , δtω
n, δtẽ

n
u))

= 4∆t((δtp
n
ht −∇δtψn−1, δtẽ

n
u) + ah(ω

n, δtuh(tn),ωn, δtẽ
n
u))

(5.26)

assuming that ω is constant with respect to time. The first term is then splitted
according to

(2(3δtẽ
n
u − 4δte

n−1
u + δte

n−2
u ), δtẽ

n
u) = I1 + I2 + I3

I1 := 3‖δtẽnu‖2
0 + 3‖δtenu − δtẽ

n
u‖2

0 − 3‖δtenu‖2
0

I2 := 2(δtẽnu − δtenu, 3δtenu − 4δte
n−1
u + δte

n−2
u )

I3 := ‖δtenu‖2
0 + ‖2δtenu − δten−1

u ‖2
0 + ‖δtttenu‖2

0

− ‖δten−1‖2
0 − ‖2δten−1

u − δten−2
u ‖2

0.
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The terms I1 and I3 are treated exactly as in [2] and also the second term
vanishes

3

4∆t
I2 = (∇(δtψ

n−1 − δtenp + Ek∇πp∇ · δtũnht), 3δtenu − 4δte
n−1
u + δte

n−2
u )

= −(δtψ
n−1 − δtenp + Ekπp∇ · δtũnht),∇ · (3δtenu − 4δte

n−1
u + δte

n−2
u )) = 0

due to the fact that uh and uht are weakly divergence-free. The incremental
projection error equation (5.25) may be rewritten as(

3δte
n
u

2∆t
+∇δtenp − Ek∇πp∇ · ũ

n
ht,∇qh

)
=

(
3δtẽ

n
u

2∆t
+∇δtψn−1 − Ek∇πp∇ · ũn−1

ht ,∇qh
)
.

(5.27)

Testing both sides with themselves and multiplying with 4(∆t)2

3
yields

‖3δtenu‖2
0 +

4(∆t)2

3
‖∇δtenp − Ek∇πp∇ · ũ

n
ht‖2

0

= ‖3δtẽnu‖2
0 +

4(∆t)2

3
‖∇δtψn−1 − Ek∇πp∇ · ũn−1

ht ‖2
0

+ 4∆t(δtẽ
n
u,∇δtψn−1 − Ek∇πp∇ · ũn−1

ht ).

For the mixed term we again use that uh is solenoidal

− 4∆t(δtẽ
n
u, Ek∇πp∇ · ũ

n−1
ht ) = −4∆t(πp∇ · δtẽnu, Ek∇ · (ũ

n−1
ht − uh(tn−1)))

= 4∆t(δtẽ
n
u, Ek∇πp∇ · ẽ

n−1
u )

= 2Ek∆t(‖πp∇ · ẽn−1
u ‖2

0 − ‖πp∇ · ẽ
n
u‖2

0 + ‖πp∇ · δtẽnu‖2
0)

≤ 2Ek∆t(‖πp∇ · ẽn−1
u ‖2

0 − ‖πp∇ · ẽ
n
u‖2

0 + ‖∇δtẽnu‖2
0).

Similarly we get

‖∇δtψn−1 − Ek∇πp∇ · ũn−1
ht ‖2

0

= ‖∇δten−1
p − Ek∇πp∇ · ũn−1

ht +∇ptt(tn)‖2
0

≤ (c(∆t)2 + ‖∇δten−1
p − Ek∇πp∇ · ũn−1

ht ‖0)2

≤ c(∆t)4 + 2c(∆t)2‖∇δten−1
p − Ek∇πp∇ · ũn−1

ht ‖0

+ ‖∇δten−1
p − Ek∇πp∇ · ũn−1

ht ‖0)2

≤ c(∆t)4 + c(∆t)((∆t)2 + ‖∇δten−1
p − Ek∇πp∇ · ũn−1

ht ‖2
0)

+ ‖∇δten−1
p − Ek∇πp∇ · ũn−1

ht ‖0)2

≤ c(∆t)3 + (1 + c∆t)‖∇δten−1
p − Ek∇πp∇ · ũn−1

ht ‖2
0.
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Combining all the estimates gives

3‖δtẽnu‖2
0 + 3‖δtenu − δtẽ

n
u‖2

0 − 3‖δtenu‖2
0

+ ‖δtenu‖2
0 + ‖2δtenu − δten−1

u ‖2
0 + ‖δtttenu‖2

0 − ‖δten−1‖2
0 − ‖2δten−1

u − δten−2
u ‖2

0

+ 4∆tEk‖∇δtẽnu‖2
0 + 4∆tγ‖∇ · δtẽnu‖2

0 + 4∆tα‖ωM × δtẽnu‖2
0

+ ‖3δtenu‖2
0 +

4(∆t)2

3
‖∇δtenp − Ek∇πp∇ · ũ

n
ht‖2

0

≤ 4∆t(δtR
n, δtẽ

n
u) + ‖3δtẽnu‖2

0 + 4∆tah(ω
n, δtuh(tn),ωn, δtẽ

n
u)

+
4(∆t)2

3
(c(∆t)3 + (1 + c∆t)‖∇δten−1

p − Ek∇πp∇ · ũn−1
ht ‖2

0)

+ 2Ek∆t(‖πp∇ · ẽn−1
u ‖2

0 − ‖πp∇ · ẽ
n
u‖2

0 + ‖∇δtẽnu‖2
0) + 4∆t(δtẽ

n
u,∇δtψn−1)

and using ∆t‖δtẽnu‖2
0 ≤ 2∆t‖δtenu‖2

0 + 2‖δtenu − δtẽ
n
u‖2

0 for ∆t < 1 we get

‖δtenu − δtẽ
n
u‖2

0 + ‖δtenu‖2
0 + ‖2δtenu − δten−1

u ‖2
0 + ‖δtttenu‖2

0 + 2∆tEk‖∇δtẽnu‖2
0

+ 4∆tγ‖∇ · δtẽnu‖2
0 + 2∆t

∑
M

(
αM‖κM(ωM × δtẽnu)‖2

0,M

)
+ 2Ek∆t‖πp∇ · ẽnu‖2

0

+
4(∆t)2

3
‖∇δtenp − Ek∇πp∇ · ũ

n
ht‖2

0

≤ 2∆t‖δtRn‖2
0 + 2∆t‖δtenu‖2

0 + 2∆t
∑
M

(
αM‖κM(ωn × δtuh(tn))‖2

0,M

)
+ ‖δten−1‖2

0 + ‖2δten−1
u − δten−2

u ‖2
0 + 2Ek∆t‖πp∇ · ẽn−1

u ‖2
0

+
4(∆t)2

3
(c(∆t)3 + (1 + c∆t)‖∇δten−1

p − Ek∇πp∇ · ũn−1
ht ‖2

0).
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Summing over n yields

‖δteNu ‖2
0 + ‖2δteNu − δteN−1

u ‖2
0

+
4(∆t)2

3
‖∇δteNp − Ek∇πp∇ · ũ

N
ht‖2

0 + 2Ek∆t‖πp∇ · ẽNu ‖2
0+

N∑
n=3

(‖δtenu − δtẽ
n
u‖2

0 + ‖δtttenu‖2
0 + 2∆tEk‖∇δtẽnu‖2

0 + 4∆tγ‖∇ · δtẽnu‖2
0

+ 4∆t
∑
M

(
αM‖κM(ω × δtẽnu)‖2

0,M

)
)

≤ ‖δte2
u‖2

0 + ‖2δte2
u − δte1

u‖2
0

+
4(∆t)2

3
‖∇δte4

p − Ek∇πp∇ · ũ
4
ht‖2

0 + 2Ek∆t‖πp∇ · ẽ4
u‖2

0+

N∑
n=3

(2∆t‖δtRn‖2
0 + 2∆t‖δtenu‖

+
4(∆t)2

3
(c(∆t)3 + c∆t‖∇δten−1

p − Ek∇πp∇ · ũn−1
ht ‖2

0)

+ 2∆t
∑
M

(
αM‖κM(ωn × δtuh(tn))‖2

0,M

)
).

Using the discrete Gronwall lemma for ‖δtenu‖2
0+ 4(∆t)2

3
‖∇δtenp−Ek∇πp∇·ũ

n
ht‖2

0+
2Ek∆t‖πp∇ · ẽnu‖2

0 we arrive at

‖δteNu ‖2
0 + ‖2δteNu − δteN−1

u ‖2
0 +

4(∆t)2

3
‖∇δteNp − Ek∇πp∇ · ũ

N
ht‖2

0

+ 2Ek∆t‖πp∇ · ẽNu ‖2
0

+
N∑
n=3

(‖δtenu − δtẽ
n
u‖2

0 + ‖δtttenu‖2
0 + 2∆tEk‖∇δtẽnu‖2

0

+ 4∆tγ‖∇ · δtẽnu‖2
0 + 4∆tah(ω, δtẽ

n
u,ω, δtẽ

n
u))

≤ (‖δte2
u‖2

0 + ‖2δte2
u − δte1

u‖2
0 +

4(∆t)2

3
‖∇δte2

p − Ek∇πp∇ · ũ
2
ht‖2

0

+ 2Ek∆t‖πp∇ · ẽ2
u‖2

0

+
N∑
n=3

(2∆t‖δtRn‖2
0 + c(∆t)5

+ 2∆t
∑
M

(
αM‖κM(ωn × δtuh(tn))‖2

0,M

)
)) exp(T/(1−∆t))

≤ C(∆t)4 + C(∆t)2h2k+2 ≤ C(∆t)4

(5.28)

using the initial errors and

2∆t
∑
M

(
αM‖κM(ωn × δtuh(tn))‖2

0,M

)
≤ C(∆t)3h2k+2.
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as well as hk+1 ≤ ∆t.

The error increment equation (5.25) states

‖enu − ẽ
n
u‖0 =

2∆t

3
‖∇(δte

n
p − δtph(tk+1)− Ekπp∇ · δtũnht)‖0

≤ 2∆t

3
(‖∇(δte

n
p + Ekπp∇ · δtũnht)‖0 + ‖δtph(tk+1)‖0)

≤ C(∆t)2.

2

5.4. Velocity Error Estimate

Next we want to bound ‖ẽnu‖. Therefore we eliminate enu in (5.19) to give(
3ẽnu − 4ẽn−1

u + ẽn−2
u

2∆t
,vh

)
+ Ek(∇ẽnu,∇vh) + 2(ω × ẽnu,vh)

+ ah(ω, ẽ
n
u,ω,vh) + γ(∇ · ẽnu,∇ · vh)− (Rn,vh)

= (∇(−ph(tn) +
7

3
pn−1
ht −

5

3
pn−2
ht +

1

3
pn−3
ht

+
4

3
Ekπp∇ · ũn−1

ht −
1

3
Ekπp∇ · ũn−2

ht ),vh)

=: (∇ζn,vh)

(5.29)

This allows us to derive the desired estimate:

Lemma 5.3: The total velocity converges according to

‖ẽu‖2
l2(0,T ;L2(Ω)) = ∆t

N∑
n=0

‖ẽnu‖2
0 ≤ c(∆t)4. (5.30)

Proof: We test equation (5.29) with the inverse Stokes operator applied to 4∆tẽnu

(2(3ẽnu − 4ẽn−1
u + ẽn−2

u ), Sẽnu) + 4∆tEk(∇ẽnu,∇Sẽ
n
u) + 8∆t(ω × ẽnu, Sẽ

n
u)

+ 4∆tah(ω, ẽ
n
u,ω, Sẽ

n
u) + 4∆tγ(∇ · ẽnu,∇ · Sẽ

n
u)

= 4∆t(Rn, Sẽnu) + 4∆t(∇ζn, Sẽnu) = 4∆t(Rn, Sẽnu).

due to Sẽnu ∈ V div
h . For the discrete time derivative we notice that from the

splitting we used before only I3 remains.

(2(3ẽnu − 4ẽn−1
u + ẽn−2

u ), Sẽnu) = ‖enu‖2
∗ + ‖2enu − en−1

u ‖2
∗ + ‖δttenu‖2

∗

− ‖en−1‖2
∗ − ‖2en−1

u − en−2
u ‖2

∗.
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Using the definition of the semi-norm induced by the inverse Stokes operator
we get

|ẽnu|2∗ + |2ẽnu − ẽ
n−1
u |2∗ + |δttẽnu|2∗ + 4∆tEk(∇ẽnu,∇Sẽ

n
u)

+ 8∆t(ω × ẽnu, Sẽ
n
u) + 4∆tah(ω, ẽ

n
u,ω, Sẽ

n
u) + 4∆tγ(∇ · ẽnu,∇ · Sẽ

n
u)

= 4∆t(Rn, Sẽnu) + |ẽn−1
u |2∗ + |2ẽn−1

u − ẽn−2
u |2∗.

(5.31)

The consistency error can be bounded as

4∆t(Rn, Sẽnu) ≤ 4
∆t

Ek
‖Rn‖2

−1 + ∆tEk‖Sẽnu‖2
1

(A.1)

≤ 4
∆t

Ek
‖Rn‖2

−1 + ∆t‖ẽnu‖2
0.

Using (A.4) with ε = 2
(

2 + γ
Ek

+
(

maxM{
√
αM}√

Ek
+ 2

Ek

)
‖ωM‖

)−2

, the diffusive

term, the grad-div stabilization, the Coriolis term and the Coriolis stabilization
can be estimated by

4∆tEk(∇ẽnu,∇Sẽ
n
u) + 4∆tγ(∇ · ẽnu,∇ · Sẽ

n
u)

+ 4∆tah(ω, ẽ
n
u,ω, Sẽ

n
u) + 8∆t(ω × Sẽnu)

≥ 2∆t‖ẽnu‖2
0 − c∆t‖ẽ

n
u − enu‖2

0.

where c = 2
(

2 + γ
Ek

+
(

maxM{
√
αM}√

Ek
+ 2

Ek

)
‖ωM‖

)2

. Combining these estimates

we arrive at

|ẽnu|2∗ + |2ẽnu − ẽ
n−1
u |2∗ + |δttẽnu|2∗ + ∆t‖ẽnu‖2

0

≤ 4
∆t

Ek
‖Rn‖2

−1 + |ẽn−1
u |2∗ + |2ẽn−1

u − ẽn−2
u |2∗ + c∆t‖ẽnu − enu‖2

0

that yields summed up

|ẽNu |2∗ + |2ẽNu − ẽ
N−1
u |2∗ +

N∑
n=3

(|δttẽnu|2∗ + ∆t‖ẽnu‖2
0)

≤ |ẽ2
u|2∗ + |2ẽ2

u − ẽ
1
u|2∗ +

N∑
n=3

(4
∆t

Ek
‖Rn‖2

−1 + c∆t‖ẽnu − enu‖2
0) ≤ c(∆t)4.

In particular we derive

‖ẽu‖2
l2(0,T ;L2(Ω)) = ∆t

N∑
n=0

‖ẽnu‖2
0 ≤ c(∆t)4. (5.32)

2
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5.5. Error Estimate for the Discrete Time Derivative

In the previous estimates we could have derived that the velocity in the LPS
converges linearly. In order improve this result it is important to get proper
bound on the discrete time derivative.

Lemma 5.4: For all 1 ≤ m ≤ N the error of the discrete time derivative can be
bounded according to

‖Dtẽu‖2
l2(0,T ;L2(Ω)) ≤ C(∆t)5. (5.33)

Proof: We start again from the error equation (5.31) for the diffusive step in
which the error unht is eliminated. This time we apply the increment operator
and test with 4∆tδtẽ

n
u. This gives

|δtẽnu|2∗ + |2δtẽnu − 2δtẽ
n−1
u |2∗ + |δtttẽnu|2∗ + 4∆tEk(∇δtẽnu,∇Sδtẽ

n
u)

+ 8∆t(ω × ẽnu, δtSẽ
n
u) + 4∆tah(ω, ẽ

n
u,ω, δtSẽ

n
u)

+ 4∆tγ(∇ · δtẽnu,∇ · Sδtẽ
n
u)

= 4∆t(δtR
n, Sδtẽ

n
u) + |δtẽn−1

u |2∗ + |2δtẽn−1
u − 2δtẽ

n−2
u |2∗

assuming ω does not depend on time.
Using the same tricks as above we arrive at

|δtẽnu|2∗ + |2δtẽnu − 2δtẽ
n−1
u |2∗ + |δtttẽnu|2∗ + ∆t‖δtẽnu‖2

0

≤ 4∆t‖δtRn‖2
−1 + |δtẽn−1

u |2∗ + |2δtẽn−1
u − 2δtẽ

n−2
u |2∗ + c∆t‖δtẽnu − δtenu‖2

0

that yields summed up

|δtẽNu |2∗ + |2δtẽNu − 2δtẽ
N−1
u |2∗ +

N∑
n=3

(|δtttẽnu|2∗ + ∆t‖δtẽnu‖2
0)

≤ |δtẽ2
u|2∗ + |2δtẽ1

u − 2δtẽ
2
u|2∗ +

N∑
n=3

(4
∆t

Ek
‖δtRn‖2

−1 + c∆t‖δtẽnu − δtenu‖2
0)

≤ c(∆t)5.

In particular we derive

‖δtẽu‖2
l2(0,T ;L2(Ω)) = ∆t

N∑
n=0

‖δtẽnu‖2
0 ≤ c(∆t)5 (5.34)

and due to Dtẽ
n
u = 3

2
δtẽ

n
u − 1

2
δtẽ

n−1
u the discrete time derivative can be bounded

according to

‖Dtẽu‖2
l2(0,T ;L2(Ω)) ≤ ∆t

N∑
n=0

(3‖δtẽnu‖2
0 + ‖δtẽn−1

u ‖2
0) ≤ c(∆t)5. (5.35)

2
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5.6. Final Estimates for Velocity and Pressure

Now, we proved almost everything we wanted. The only things that are left
are the estimated in the H1-Seminorm for the velocity and the pressure esti-
mates. These of course rely heavily on the inf-sup stability (2.3) of the used
ansatz spaces. In particular this is equivalent to the surjectivity of the discrete
divergence operator.

Lemma 5.5: For all 1 ≤ m ≤ N the velocity error in the LPS-norm and the
pressure error in the L2(Ω)-norm converge according to

‖emu ‖2
LPS + ‖emp ‖2

0 ≤ C(∆t)3. (5.36)

Proof: The error equations for the diffusive and for the projective step are
equivalent to the inhomogeneous Stokes problem

(∇enp − Ek∇πp∇ · ẽ
n
u,vh) + Ek(∇ẽnu,∇vh) + 2(ω × ẽnu,vh)

+ ah(ω, ẽ
n
u,ω,vh) + γ(∇ · ẽnu,∇ · vh)

= (Rn,vh)−
(

3enu − 4en−1
u + en−2

u

2∆t
,vh

)
,vh) =: (hn,vh)

(∇ · ẽnu, qh) = (πp∇ · ẽnu, qh)

=
2∆t

3
(∇(pnht − pn−1

ht + Ekπp∇ · ũnht),∇qh) =: (gn, qh)

ẽnu|∂Ω = 0.

(5.37)

Due to (5.28) we know

‖gn‖2
0 = ‖πp∇ · ẽnu‖2

0 ≤ C(∆t)3 min

{
1

Ek
,

1

γ∆t

}
(5.38)

and noticing enu = PH(ẽnu)

∆t
N∑
n=0

‖hn‖2
−1 . ∆t

N∑
n=0

(
‖Rn‖2

−1 +
‖Dte

n
u‖2
−1

(∆t)2

)

. ∆t
N∑
n=0

(
‖Rn‖2

−1 +
‖Dtẽ

n
u‖2
−1

(∆t)2

)
(5.35)

≤ C(∆t)3.

(5.39)

Finally, we need a stability result for such a grad-div stabilized Stokes equation
defined by

Ek(∇uh,∇vh)− (ph,∇ · vh) + 2(ω × uh,vh)
+ah(ω,uh,ω,vh) + γ(∇ · uh,∇ · vh) = (h,vh) ∀vh ∈ V h

(∇ · uh, qh) = (g, qh) ∀qh ∈ Qh

uh|∂Ω = 0.

(5.40)
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Due to the discrete inf-sup condition there exists u0 ∈ V h satisfying

‖∇u0‖ ≤
‖g‖0

β
(∇ · u0, qh) = (g, qh) ∀qh ∈ Qh. (5.41)

This means that wh = uh − u0 satisfies

Ek(∇wh,∇vh)− (ph,∇ · vh) + (∇ ·wh, qh) + 2(ω ×wh,vh)

+ ah(ω,wh,ω,vh) + γ(∇ ·wh,∇ · vh)
= (h,vh)− Ek(∇u0,∇vh)− γ(∇ · u0,∇ · vh)− 2(ω × u0,vh)

− ah(ω,u0,ω,vh)

(5.42)

for all (vh, qh) ∈ V h ×Qh.
Testing symmetrically we get

Ek‖∇wh‖2
0 + γ‖∇ ·wh‖2

0 +
∑
M

(
αM‖κM(ωM ×wh)‖2

0,M

)
= Ek‖∇wh‖2

0 − (ph,∇ ·wh) + 2(ω ×wh,wh) + (∇ ·wh, ph)

+
∑
M

(
αM‖κM(ωM ×wh)‖2

0,M

)
+ γ‖∇ ·wh‖2

0

= (h,wh) + Ek(∇u0,∇wh) + γ(∇ · u0,∇ ·wh)

− 2(ω × u0,wh)− ah(ω,u0,ω,wh)

≤ (‖h‖−1 + Ek‖∇u0‖0 + γ‖∇ · u0‖0

+ (2 + max
M
{αM |ωM |})‖ω‖∞‖∇u0‖0)‖∇wh)‖0

≤
(
‖h‖−1 +

Ek + γ + (2 + maxM{αM |ωM |})‖ω‖∞
β

‖g‖0

)
‖∇wh)‖0

⇒ ‖∇wh‖0 ≤
(
‖h‖−1

Ek
+
Ek + γ + (2 + maxM{αM |ωM |})‖ω‖∞

Ekβ
‖g‖0

)
⇒ ‖∇uh‖0 . ‖∇u0‖2

0 + ‖∇wh‖2
0

.

(
‖h‖−1

Ek
+
Ek + γ + (2 + maxM{αM |ωM |})‖ω‖∞

Ekβ
‖g‖0

)
(5.43)

⇒
∑
M

αM‖κM(ωM ×wh)‖2
0,M

≤ 1

Ek

(
‖h‖−1 +

Ek + γ + (2 + maxM{αM |ωM |})‖ω‖∞
β

‖g‖0

)2

⇒
∑
M

αM‖κM(ωM × uh)‖2
0,M

.
∑
M

αM‖κM(ωM × u0)‖2
0,M +

∑
M

αM‖κM(ωM ×wh)‖2
0,M

.
1

Ek

(
‖h‖−1 +

Ek + γ + (2 + maxM{αM |ωM |})‖ω‖∞
β

‖g‖0

)2

.

(5.44)
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Using the inf-sup stability again there exists vh such that

‖∇vh‖ ≤ β−1‖ph‖ (∇ · vh, qh) = −(ph, qh) ∀qh ∈ Qh.

and we find

β‖∇vh‖‖ph‖ ≤ ‖ph‖2
0 = −(ph,∇ · vh)

≤ (h,vh)− Ek(∇uh,∇vh)− ah(ω,uh,ω,vh)
− 2(ω × uh,vh)− γ(∇ · uh,∇ · vh)
≤ (‖h‖−1 + (Ek + γ + 2‖ω‖)‖∇uh‖

+ max
M
{αM}ah(ω,uh,ω,uh)1/2‖ω‖)‖∇vh‖

≤ (‖h‖−1 + (Ek + γ + 2‖ω‖)(
‖h‖−1

Ek
+
Ek + γ + (2 + maxM{αM |ωM |})‖ω‖∞

Ekβ
‖g‖0

)
+

maxM{αM |ωM |}√
Ek(

‖h‖−1 +
Ek + γ + (2 + maxM{αM |ωM |})‖ω‖∞

β
‖g‖0

)
)‖∇vh‖

⇒ ‖ph‖ ≤
C

β

(
1 +

Ek + γ + 2‖ω‖
Ek

+
maxM{αM |ωM |}√

Ek

)
‖h‖−1

+
C

β

Ek + γ + (2 + maxM{αM |ωM |})‖ω‖∞
Ekβ(

Ek + γ + 2‖ω‖+
√
Ekmax

M
{αM |ωM |}

)
‖g‖0.

Applying this result to the previous inhomogeneous Stokes problem (5.37) yields

N∑
n=0

‖∇ẽnu‖2 +
N∑
n=0

‖enp − Ekπp∇ · ẽ
n
u‖2 ≤ C

Ek2 (∆t)3. (5.45)

Finally, we note

N∑
n=0

‖enp‖2 .
N∑
n=0

(
‖enp − Ekπp∇ · ẽ

n
u‖2 + ‖Ekπp∇ · ẽnu‖2

)
≤ C

Ek2 (∆t)3.

2

Now, we derived all error estimates due to time discretization that we wanted
and collect them in the following theorem.

Theorem 5.1: The errors due to time discretization converge according to

‖eu‖2
l2(0,T ;L2(Ω)) + ∆t

(
‖eu‖2

l2(0,T ;LPS) + ‖ep‖2
l2(0,T ;L2(Ω))

)
≤ C(∆t)4. (5.46)

Proof: Lemma 5.5 and Lemma 5.3. 2
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6. Numerical Examples

For numerical simulations, we take advantage of the C++-FEM package deal.ii
[16]. Let us first summarize some numerical experience with ”academic” numer-
ical examples in inertial frames of reference, see [1, 17]:

• For most the ”academic” we see a relevant dependence of the error w.r.t to
the velocity error in case of one-level methods as in Subsec. 4.1-4.2. Only
when separation occurs or we consider non-convex domains an effect of LPS-
SU stabilization can be observed [1]. In particular, for a parameter choice
due to τM ∼ h/‖u‖M best results are achieved for the energy cascade in a
decaying, homogeneous, isotropic turbulence.

• The two-level approach is applied in [17] for methods with compatibility con-
dition which are covered by the theory in Subsec. 4.2. For an academic ex-
ample and the two-dimensional driven cavity problem with Reynolds num-
bers ReΩ ∈ {1000, 7500}, similar conclusions as for the one-level method are
found. In particular, for the driven cavity problem a very good agreement
with benchmark results on much finer grids is observed.

• For results concerning the parameter design w.r.t. to the time discretization
we again refer to [15]. We basically see no influence for the local projec-
tion stabilization in inertial frames of references. However, the grad-div
stabilization parameter improves the velocity error for higher Reynolds
numbers much. On the other hand best results for the pressure are achieved
when no grad-div stabilization is used. For lower Reynolds number we see
a tremendous effect of the rotational correction in the projection step.

6.1. Analytical Reference

We first consider a manufactored solution, such that we know a solution we can
compare to and evaluate the rates of convergence.
Choose f such that the following pair is a solution in Ω = [0, 1]2:

u(x) = sin (πt)

(
− cos

(
1

2
πx

)
sin

(
1

2
πy

)
, sin

(
1

2
πx

)
cos

(
1

2
πy

))T
p(x) = −π sin

(
1

2
πx

)
sin

(
1

2
πy

)
sin (πt).

In this example we use the stabilization parameters γ = 1, τM = 1/|uM |2 and
αM = 1. The time step size is fixed to ∆t = 10−3. Figures 1 and 2 show the effect
of the stabilization for various Ekman numbers, ω = (0, 0, 1)T and Ro = 1.

We clearly see that the order of convergence in the unstabilized case dete-
rioates quickly with decreasing Ekman number. Using stabilization we acquire
the expected rates of convergence. Just for the finest meshes we see that the time
step size is dominating the error. For the pressure the error is independent of
stabilization and Ekman number. In this example the effect of LPS stabilization
is negligible (not shown).
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Figure 1: Velocity error w.r.t. L2(Ω) for the analytical testcase,
unstabilized (left) and stabilized (right)
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Figure 2: Velocity error w.r.t. H1(Ω) for the analytical testcase,
unstabilized (left) and stabilized (right)

6.2. Rotating Poiseuille Flow

Next we turn our attention to a slightly more realistic case. We consider a channel
given by the domain Ω = [−2, 2]× [−1, 1] which rotates around its midpoint and
the inflow is given by a quadratic profile.

u(x, y) =

{
(1− y2, 0)T , x = −2

(0, 0)T , |y| = 1

(∇u · n)(x = 2, y) = 0

u0 = 0, p0 = 0, f = 0

For the critical parameters we choose ω = (0, 0, 100)T and Ek = 10−3. The basic
flow we expect is one where all outflow happens in a small area on the bottom left
side. In particular, the streamlines are strongly curved at the outflow boundary
and resolving the boundary layers there by stabilization or grid refinement is
important to prevent that oscillations occur.

For this example we use the stabilization parameters γ = 1, τM = 1/|uM |2
and αM = 1/h. Using only grad-div stabilization leads to high oscillations that
spread from the outflow into the interior of the domain (Figure 3). This behav-
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Figure 3: Rotating Poiseuille Flow, grad-div
left: Streamlines; right: Profile at the outflow boundary x = 2

Figure 4: Rotating Poiseuille Flow, grad-div adaptive
left: Streamlines; right: Profile at the outflow boundary x = 2

ior improves when the mesh is refined adaptively (Figure 4), but nevertheless
oscillations occur. Hence, grad-div stabilization is not sufficient in this example.

Using LPS-Coriolis stabilization additionally improves the solution a lot. All
the oscillation in the interior of the domain are damped away and only at the
outflow boundary smaller oscillations occur (Figure 5). If we use the LPS-SUPG
stabilization instead the situation is similar but there are oscillations that spread
into the interior (Figure 6).

Finally, we combine all the considered stabilizations and use adaptive mesh
refinement. This finally leads to a solution that has all the features (Figure 7)
and we see that all these parts are necessary.

6.3. The Proudman-Stewartson Problem

We now come to a more realistic case in which we consider the fluid motion
between two rotating spheres. The frame of reference we choose is one in which
the one does not move. Given that the inner cylinder rotates with a angular
velocity vector ωiez and the outer one with ωoez the problem that we are solving
can be stated as
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Figure 5: Rotating Poiseuille Flow, Coriolis
left: Streamlines; right: Profile at the outflow boundary x = 2

Figure 6: Rotating Poiseuille Flow, SUPG
left: Streamlines; right: Profile at the outflow boundary x = 2

Figure 7: Rotating Poiseuille Flow, SUPG Coriolis Adaptive
left: Streamlines; right: Profile at the outflow boundary x = 2
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∂u

∂t
+Ro(u · ∇)u+ 2êz × u = Ek∆u−∇p

∇ · u = 0

u = r sin θêφ at r = ri

u = 0 at r = ro

where the critical parameters are defined as follows

ri = 1/2 ro = 3/2

Ro :=
ωi − ωo
ωo

Ek :=
ν

ωo(ro − ri)2
.

The flow that we expect to see is one in which the angular velocity is between
the ones on the outer and inner sphere in the cylinder r < ri. Outside this
cylinder the flow should basically be at rest. For small Ekman numbers we expect
to see basically a solution that is constant in z-direction and following the motion
of the inner sphere, i.e.

u = r sin θêφ

in the rotating frame of reference. The boundary layers (Ekman layers) at the
inner and outer sphere have a width according to Ek1/2. A secondary flow is
given by a meridional circulation from the outer to the inner Ekman layer inside
the cylinder r < ri and from the inner to the outer Ekman layer outside this
cylinder.

In order to resolve the various flow structure we again take advantage of an
adaptive mesh refinement that is based on the jump of the gradient of the solution
along the faces of each cell. We expect to see that most of refinement takes place
near the inner and outer sphere and the boundary of the tangent cylinder, i.e.
at r = ri. A typical picture can be seen in Figure 8.

In the following Figures 9 - 14 we consider the occurring flow different Ekman
and Rossby numbers. In agreement with [18] we observe only minor effects for
the profile of the angular velocity with respect to Ro. However, the solutions
for Ek = 4.5 are unstable and thus not shown here. Apart from that we see
that the chosen parameter setting in combination with the use of adaptive mesh
refinement is sufficient to resolve all the relevant flow features.

6.4. Precessing Sphere

The last example that we are going to consider is a precessing sphere. That is
work in progress. At the moment we are interested in confirming the results
that Y.Lin, P.Marti and J.Noir in [19] obtained for precessional instabilities in
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Figure 8: Proudman-Stewartson problem,
left: Iso faces of the velocity magnitude for Ek = 10−6, Ro = 0;
right: Mesh and isolines for Ek = 10−4, Ro = .5

Figure 9: Instabilities of the Stewartson Layer, Ek=10−3.5, Ro=−.5

a rotating spherical cavity. Considering the frame in which the mantle frame is
fixed the set of equations that we solve for this problem is given by

∂u

∂t
+ (u · ∇)u− Ek∆u+ 2(k̂ + Pok̂p)× u = fPo −∇p

∇ · u = 0

u = 0 in ∂Ω× (0, T ]
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Figure 10: Instabilities of the Stewartson Layer, Ek=10−3.5, Ro=0

Figure 11: Instabilities of the Stewartson Layer, Ek=10−3.5, Ro=.5

Figure 12: Instabilities of the Stewartson Layer, Ek=10−4, Ro=−.5
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Figure 13: Instabilities of the Stewartson Layer, Ek=10−4, Ro=0

Figure 14: Instabilities of the Stewartson Layer, Ek=10−4, Ro=.5

where the Poincar force is given by fPo = Po(k̂p × k̂)× r

k̂p =(î cos(t)− ĵ sin(t)) sin(αp) + k̂ cos(αp)

Ek :=
Ek

ΩoR2
Po :=

ΩP

Ωo

.

At first we are interested in the main flow that is excited by the precessional
force. Therefore we consider the angle that the main fluid rotation axis forms
with the rotation axis around which the precession axis rotates. Defining the
velocity in the pression frame by

up = u+ ẑ × r

this angle αF is defined according to

2ωF = 〈∇ × uP 〉 = 〈∇ × u〉+ 2ẑ

cos(αF ) = k̂ · ω̂F
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Figure 15: Y.Lin, P.Marti, J.Noir: Sketch of the problem

Table 1: The angle αF between rotation axes of the container and the fluid in dependence of
the Poincare number and the Ekman number

Ek 10−4 10−5 10−6 3 · 10−5 3 · 10−5 3 · 10−5

Po −10−4 −10−4 −10−4 −10−3 −.0007 −0.014

αF 0.0014 0.0099 0.0029 0.020 0.49 0.32

Figure 16: left: αF in dependence on Po at fixed Ek = 3.0× 10−5;
right: αF in dependence on Ek at fixed Po = −1.0× 10−4
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Figure 17: Precessing Sphere, Ek = 10−6, Po = −10−4,
View on the equatorial plane, left to right: ‖u‖, ur, uθ, uφ

Figure 18: Precessing Sphere, Ek = 10−6, Po = −10−4,
View on the x = 0 plane (z-axis up), left to right: ‖u‖, ur, uθ, uφ

Our results with respect to this quantity can be seen in Table 1. Comparing
with the diagram that Lin et al. obtained (see Figure 16) we observe a good
agreement with the left plot up to Po = 0.007 and with the right plot up to
Po = 10−5. We suspect the deviation of the other points to be a consequence of
averaging the vorticity over too much of the near boundary area.

Exemplarily, we show in Figures 17 and 18 the flow patterns for Ek = 10−6,
Po = −10−4 that we observe after substracting the main fluid rotation. Due to
the fact that this pictures show a sufficient resolution of the boundary layer we
see our previous suspection for the computation of the main fluid rotation axis
confirmed.

7. Discussion and Summary

We considered conforming finite element (FE) approximations of the time-
dependent Navier-Stokes problem with inf-sup stable approximation of velocity
and pressure in rotating frames of reference. We introduced a variant of the
local projection stabilization method for dealing with cases in which critical
parameter introduce unphysical oscillations to the solution. The approach
combines ideas of streamline upwinding, grad-div stabilization and stabilization
of theskew-symmetric coriolis term.

A stability and convergence analysis is provided for the arising nonlinear
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semidiscrete problem. Similar to [9] and our observations in [15], we can show
that the Gronwall constant does not explicitly depend on the Reynolds number
ReΩ for velocities u ∈ [L∞(0, T ;W 1,∞(Ω)]d. In the interesting case of LPS
methods without an additional compatibility condition between the basic local
velocity space and the projection space, our approach improves a result of
Matthies/Tobiska in [7] for the Oseen problem. If the mentioned compatibility
condition is valid, we can remove a restriction on the local mesh width which
appeared in the former case.

The grad-div stabilization with parameters γ ∼ 1 seems to be essential
for improved mass conservation and velocity estimates in W 1,2(Ω). Numerical
examples confirm these theoretical results. In particular, for boundary layer
flows the SUPG-type stabilization τM ∼ 1/u2

M seems to be important for
modeling unresolved velocity scales. However, in case of dominating rotation a
stabilization that only affects the streamline direction of the flow does not seem
to be sufficient. In this case the suggested stabilization of the coriolis term is
essential. Furthermore, the results show that the proposed approach is capable
of resolving flow structures in physically interesting cases.

Future considerations to further examine the flow structures in spherical pre-
cessing domains and thus confirming the results from ETH Zürich group. Fur-
thermore we want to extend the observations to ellipsoidal domains with a small
eccentricity.

A. The Inverse Stokes Operator

For the defined ansatz spaces V h and Qh we define the (grad-div and Coriolis
stabilized) inverse Stokes operator as the solution Sv ∈ V h of the problem

Ek(∇Sv,∇w)− (r,∇ ·w) + 2(ω × Sv,w)

+γ(∇ · Sv,∇ ·w) + ah(ω, Sv,ω,w) = (v,w) ∀w ∈ V h

(∇ · Sv, q) = 0 ∀q ∈ Qh

In particular Sv is discretely solenoidal, i.e. Sv ∈ V div
h .

By testing this equation symmetrically we can derive an estimate on the
solution in the H1-Seminorm

Ek‖∇Sv‖2
0 + γ‖∇ · Sv‖2

0 +
∑
M

(
αM‖κM(ω × Sv)‖2

0,M

)
= (v, Sv) ≤ ‖v‖−1‖∇Sv‖

⇒ ‖∇Sv‖ ≤ 1

Ek
‖v‖−1

⇒
∑
M

αM‖κM(ω × Sv)‖2
0,M ≤

1

Ek
‖v‖2

−1.

(A.1)
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According to the discrete inf-sup condition (2.3), we have for r ∈ Qh the
existence of a unique w ∈ V h with

(∇ ·w, q) = −(r, q) ∀q ∈ Qh

‖∇w‖ ≤ β−1‖r‖.

Testing with (w, 0) ∈ V h ×Qh, we obtain

β‖∇w‖‖r‖ ≤ ‖r‖2
0

≤ (v,w)− Ek(∇Sv,∇w)− γ(∇ · Sv,∇ ·w)

− ah(ω, Sv,ω,w)− 2(ω × Sv,w)

≤ (‖v‖−1 + (Ek + γ)‖∇Sv‖
+ CP max

M
{
√
αM}ah(ω, Sv,ω, Sv)1/2‖ω‖‖∇w‖

+ 2C2
p‖ω‖‖∇Sv‖‖∇w‖

≤
(

2 +
γ

Ek
+

(
CP

maxM{
√
αM}√

Ek
+

2C2
p

Ek

)
‖ωM‖

)
‖v‖−1‖∇w‖.

A combination of these estimates states

‖r‖+ Ek‖∇Sv‖ ≤ C

(
1 +

γ

Ek
+

(
maxM{

√
αM}√

Ek
+

1

Ek

)
‖ωM‖

)
‖v‖−1.

(A.2)

Provided the solution is sufficiently smooth we test with (−∆Sv,−∆r) to get

Ek‖∆Sv‖2
0 + γ‖∇∇ · Sv‖2

0 + α‖ω ×∇Sv‖2
0

= Ek(∇ · ∇Sv,∇ · ∇Sv) + γ(∇∇ · Sv,∇∇ · Sv) + ah(ω,∇Sv,ω,∇Sv)

= −Ek(∇Sv,∇∆Sv) + (r,∇ ·∆Sv)− (∇ · Sv,∆r)− 2(ω × Sv,∆Sv)

− ah(ω, Sv,ω,∆Sv)− γ(∇ · Sv,∇ ·∆Sv)

= −(v,∆Sv) ≤ ‖v‖‖∆Sv‖

⇒ ‖∆Sv‖ ≤ 1

Ek
‖v‖

⇒
∑
M

αM‖κM(ωM ×∇Sv)‖2
0,M ≤

1

Ek
‖v‖2

(A.3)
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For the pressure we get by testing with w = ∇r

‖∇r‖2
0 = −(r,∇ · ∇r)

= −Ek(∇Sv,∇∇r)− γ(∇ · Sv,∇ · ∇r) + (v,∇r)
− ah(ω, Sv,ω,∇r)− 2(ω × Sv,∇r)

= Ek(∆Sv,∇r) + γ(∇∇ · Sv,∇r) + (v,∇r)
− ah(ω, Sv,ω,∇r)− 2(ω × Sv,∇r)
≤ (Ek‖∆Sv‖+ γ‖∇∇ · Sv‖+ ‖v‖)‖∇r‖
− ah(ω, Sv,ω,∇r)− 2(ω × Sv,∇r)
≤ ((Ek + γ)‖∆Sv‖+ ‖v‖)‖∇r‖

+ max
M
{
√
αM}ah(ω, Sv,ω, Sv)‖ω‖‖∇r‖+ 2‖ω‖‖Sv‖‖∇r‖

≤
(

2 +
γ

Ek
+

(
maxM{

√
αM}√

Ek
+

2

Ek

)
‖ωM‖

)
‖v‖‖∇r‖

⇒ ‖∇r‖ ≤
(

2 +
γ

Ek
+

(
maxM{

√
αM}√

Ek
+

2

Ek

)
‖ωM‖

)
‖v‖

using the vector identity ∇×∇×v = ∇∇·v−∆v and (∇×∇×v,∇∇·v) = 0.
Next we are interested in a lower bound for the seminorm induced by the

inverse Stokes operator.

|v|∗ :=Ek(∇Sv,∇v) + γ(∇ · Sv,∇ · v) + ah(ω, Sv,ω,v)

=‖v‖2
0 + (r,∇ · v)

=‖v‖2
0 − (∇r,v − v∗) ∀v∗ ∈ V div

h

≥‖v‖2
0 − ‖∇r‖‖v − v∗‖

≥‖v‖2
0 −

(
2 +

γ

Ek
+

(
maxM{

√
αM}√

Ek
+

2

Ek

)
‖ωM‖

)
‖v‖‖v − v∗‖

≥

(
1−

(
2 +

γ

Ek
+

(
maxM{

√
αM}√

Ek
+

2

Ek

)
‖ωM‖

)2
ε

4

)
‖v‖2

0

− 1

ε
‖v − v∗‖2

0 ∀ε > 0

(A.4)
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