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Introduction 1

Introduction

In this thesis we examine an augmented Taylor-Hood element on quadrilateral or hexahedral

meshes. This modification consists in adding elementwise constant functions to the pressure

space. We want to understand the resulting finite element pair in terms of stability, mass

conservation and performance. In particular we analyze the behavior when applied to

incompressible flow, namely the Stokes and Navier-Stokes equations.

Motivation

The flow of fluids is a omnipresent phenomenon in our environment and daily life. Physically

these motions are governed by the Navier-Stokes equations. They are for example used

for forecasting the weather, calculating storm damages in forests, water flows or in the

construction of the wings of airplanes.

In many cases the considered fluid can be assumed to be incompressible. This means that

the the material density remains constant within a parcel of fluid which moves with the

fluid velocity. A mathematical equivalent is that the divergence of the velocity vanishes

due to the conservation of mass. In this thesis we consider the resulting incompressible

Navier-Stokes equations and in a previous step the Stokes equations as a simplification for

the situation when advective forces are negligible compared to viscous forces. In particular,

we are interested in the influence of the incompressibility constraint on numerical results.

In a finite element approach all the equations are only stated in a weak formulation.

Although on a continuous level this equivalent, the discretized formulation does not imply

that the numerical velocity solution is pointwise solenoidal. Nevertheless, the construction

of many discretizations for incompressible flow problems relies on this property. For that

reason it is desirable to fulfill this requirement at least locally. This can be ensured by

choosing a discrete pressure ansatz space containing elementwise constant functions. In

particular in this case the approximation space is discontinuous.

In many flow problems solutions with discontinuous pressure occur, e.g. two-phase flows.

In the so-called continuum surface force model [BKZ92] the right-hand side is discontinuous

in the resulting Navier-Stokes equation along the interface of the phases. This leads to

a discontinuous pressure solution with poor interpolation accuracy whenever the finite

element interpolants are continuous across the interface. Thus, a discontinuous pressure

ansatz space combined with a mesh that is aligned along the interface improves the results

much [GR07].



2 Introduction

Outline

First of all in Section 1 we define finite element methods and state the assumptions that

we want to impose on the triangulation. Furthermore, we define the polynomial spaces

that are used for the approximation in this thesis.

Section 2 is then devoted to the Stokes problem. We extend the inf-sup stability of the pair

Pk+1/(Pk + P0) on simplicial meshes (proved by Boffi et al. in [BCGG12]) to our element

pair on quadrilateral and hexahedral meshes in space dimensions d = 2, 3. Afterwards

we obtain some convergence results and confirm the optimality numerically. Finally, we

discuss our implementation into the finite element library deal.II.

We construct suitable methods for solving a Poisson equation using the element (Qk +Q0)

in Section 3. This kind of problem often occurs when one discretizes incompressible flow

problems. In this thesis we need the result for constructing a preconditioner for the

Navier-Stokes problem.

Finally, the full incompressible Navier-Stokes equations are considered in Section 4. We

state the details of our implementation and especially discuss the construction of a suitable

preconditioner. A channel flow is considered as testcase and the resulting statistics are

compared with reference data using a turbulence model by Verstappen.



1 Finite elements

The finite element method (FEM) is a special version of Ritz-Galerkin method that is

characterized by the following properties:

• The domain Ω is divided into polyhedral fragments called elements.

• The numerical solution is a linear combination of ansatz functions with support on

few of these elements.

• In order to obtain the numerical solution the problem has to be stated in a variational

(or weak) formulation.

In [Giv01] the finite element method is declared to one of the top 10 algorithms of the

20th century in computational mechanics and thus one of the most used techniques for

numerically solving partial differential equations.

We use this technique in order to approximate the solution of the considered incompressible

flow problems.

The following mathematical description of finite elements is based on [GR86, p. 95-109].

Definition 1.1 (Finite element). A finite element is a triple (K,P ,ΣK) satisfying

• K ⊂ Rn is a closed, convex, polyhedral set with a Lipschitz-continuous subset and

meas(K) 6= 0.

• The space of shape functions PK is finite dimensional linear function space with

dimension d on K.

• The set of degrees of freedom (dofs) ΣK consists of d linear independent functionals

σi, i = 1, . . . , d on PK . Each p ∈ PK is uniquely determined by the d values

σi(p), i = 1, . . . , d.

1.1 Triangulation

For the construction of finite elements spaces we need a decomposition of the domain Ω into

finite elements. In this thesis the triangulations consist either of triangular or quadrilateral

resp. hexahedral elements. In order to classify certain types of decompositions of Ω we

define on each element K the quantities hK , ρK and σK by

hK = inf{diam(B), B ⊂ K is a ball}
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ρK =


sup{diam(B), B ⊃ K is a ball} simplicial triangulation Th

2 min
1≤i≤2d

sup{diam(B), B ⊃ Si is a ball} quadrilateral or hexahedral

triangulation Th
σK = hK/ρK ≥ 1.

where Si is the d-simplex spanned by the d neighboring edges of vertex ai.

With these definitions we are able to specify a given decomposition with respect to greatest

diameter of an element.

Definition 1.2 (Triangulation). A decomposition Th = {Ki}i=1,...,n of the domain Ω in

finitely many elements Ki satisfying

Ω =
n⋃
i=1

Ki,

hK ≤ h ∀K ∈ Th

is called triangulation.

Furthermore, the triangulations that we want to consider in this thesis have to satisfy the

following regularity assumption.

Definition 1.3 (Admissibility). A triangulation Th of Ω is admissible if the intersection

between two distinct elements is

• empty,

• a common vertex,

• a common side (d ≥ 2)

• or a common face (d = 3).

Additionally, we want to characterize a family of triangulations {Th}h with respect to

hK , ρk and σK .

Definition 1.4 (Regularity and uniformity).

1. A family {Th}h of triangulations is said to be regular if

σK ≤ C1 ∀K ∈ Th. (1.1)

where C1 > 0 is a constant independent of h.
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2. If in addition there exists a constant C2 > 0 independent of h such that

C2h ≤ hK ≤ C1ρK ∀K ∈ Th, (1.2)

then Th is called uniformly regular or quasi-uniform.

If not stated more precisely, we assume all triangulations in this thesis to be regular. In

particular this means that we do not consider anisotropic elements. For approximation

results in that case we refer to the monograph [Ape99] by Thomas Apel.

1.2 Polynomial spaces

After defining the triangulations we now consider the ansatz functions that we want to

use on each element. We distinguish here between simplicial (triangular resp. tetrahedral)

and quadrilateral resp. hexahedral elements.

In the case of simplicial elements we consider the following space.

Definition 1.5 (Space of polynomials). Let {ei, 1 ≤ i ≤ d} denote the standard unit

vectors in Rd. Then the space of polynomials of order k ∈ N0 on the reference cell

K̂ = conv{ei : 1 ≤ i ≤ d} is defined by

Pk = span

{
d∏
i=1

xαii :
d∑
i=1

αi ≤ k

}
. (1.3)

For quadrilateral or hexahedral elements we use the following product polynomial space.

Definition 1.6 (Space of tensor product polynomials). The space of tensor product

polynomials of order k ∈ N0 on the reference cell K̂ = [0, 1]d is defined by

Qk = span

{
d∏
i=1

xαii :
d

max
i=1

αi ≤ k

}
. (1.4)

In order to define the used function spaces on arbitrary elements, we need to have a

mapping from the reference cell that transforms the polynomial spaces adequately.

In the case of simplicial elements there exists exactly one invertible affine-linear mapping

FK ∈ P1 that maps the reference cell K̂ onto a generic simplicial element K = conv{ai ∈
Rd, 1 ≤ i ≤ d+ 1} where

FK(ei) = ai, 1 ≤ i ≤ d+ 1. (1.5)
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Similarly there exists exactly one invertible multilinear mapping FK ∈ Q1 that maps

the reference cell K̂ to a generic quadrilateral resp. hexahedral element K = conv{ai ∈
Rd, 1 ≤ i ≤ 2d} where

FK(ei) = ai 1 ≤ i ≤ 2d. (1.6)

Figure 1.1: Bilinear mapping FK from the reference cell K̂ to the quadrilateral element K

Finally, we are able to describe the mapped polynomial spaces Rk(K) that are defined by

Rk(K) = {r = r̂ ◦ F−1
K , r̂ ∈ Rk} (1.7)

where Rk is either the space of polynomials Pk or the space of tensor product polynomials

Qk and FK the respective mapping from the reference cell.

Remark 1.7. Since the polynomial space Pk is invariant under affine linear mappings, the

mapped space can in the case of simplicial elements equivalently be described as

Pk = span

{
d∏
i=1

xαii :
d∑
i=1

αi ≤ k

}
. (1.8)

Remark 1.8. In the case of quadrilateral or hexahedral elements the mapped space Qk(K)

is in general not a space of polynomials. This stems from the fact that the mapping FK is

affine multilinear and in general not affine linear. Just for parallelotops FK is affine linear.

Because also Qk is invariant under affine linear transformations, in this case the mapped

space can equivalently be described as

Qk = span

{
d∏
i=1

xαii :
d

max
i=1

αi ≤ k

}
. (1.9)

However, in general we can only assume to have polynomials on the reference cell.



2 Stokes equations

In a domain Ω we consider the Stokes equations

−ν∆u+∇p = f in Ω

divu = 0 in Ω

u = 0 on ∂Ω

(2.1)

that describe incompressible flow in which advective inertial forces are neglectable compared

to viscous forces. u is the velocity of the fluid, p the pressure and f an external force that

drives the motion. Finally, ν denotes the kinematic viscosity that expresses the ration of

the inertial to viscous forces.

In order to solve these equations we consider the weak formulation:

Find (u, p) ∈ V ×Q such that

a(u,v) + b(v, p) =f(v) ∀v ∈ V

b(u, q) =0 ∀q ∈ Q

(2.2)

where f ∈ [H−1(Ω)]d and the bilinear forms a(·, ·) and b(·, ·) are given by

a(u,v) = ν

∫
Ω

∇u : ∇v dx

b(u, p) = −
∫

Ω

p divu dx.

(2.3)

Since only the derivative of the pressure p appears in the equations, we have to impose

an additional constraint in order to achieve uniqueness. Therefore, we choose as pressure

solution space Q = L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω
q dx = 0}. The velocity has to be weakly

differentiable and we want to find a velocity solution in V = [H1
0 (Ω)]d. Then we get the

following existence and uniqueness result.

Theorem 2.1. Let Ω ⊂ Rd be a bounded and connected open subset with Lipschitz-

continuous boundary Γ. Then there exists for each f ∈ [H−1(Ω)]d a unique pair (u, p) ∈
[H1

0 (Ω)]d × L2
0(Ω) that solves (2.1) and (2.2).

Proof. cf. [GR86, Theorem 5.1]

Remark 2.2. A crucial part in the proof is to show that the choice of spaces V ×Q satisfies

the inf-sup condition

∃β > 0 : inf
q∈Q
q 6=0

sup
v∈V
v 6=0

b(v, q)

‖v‖V ‖q‖Q
≥ β. (2.4)
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The discrete counterpart (2.10) is of similar importance for the discrete case.

Next we are interested in solving the Stokes problem numerically using finite elements

defined in Section 1. Therefore, we choose a regular triangulation Th and finite dimensional

spaces V h and Qh. For this problem we restrict ourselves to the case of conforming

elements, i.e. V h ⊂ V and Qh ⊂ Q. The discretized Stokes problem then reads:

Find (uh, ph) ∈ V h ×Qh such that

a(uh,vh) + b(vh, ph) =(f ,vh)[L2(Ω)]d ∀vh ∈ V h

b(uh, qh) =0 ∀qh ∈ Qh.

(2.5)

A common choice of the finite element spaces is the Taylor-Hood pair of order k ∈ N>0

Vh = {v ∈ H1
0 (Ω)d : v|K ∈ Qk+1(K)d ∀K ∈ Th}

Qh = {q ∈ L2
0(Ω) ∩ C(Ω) : q|K ∈ Qk(K) ∀K ∈ Th}.

(2.6)

It is well-known that these elements satisfy a discrete inf-sup condition (cf. Remark 2.11)

and that there is a unique numerical solution (cf. Theorem 2.12). But in general we cannot

expect the numerical solution to be more than globally mass conservative, i.e.∫
Ω

divuh dx = 0. (2.7)

At the same time, using elementwise constant elements (Q0) for the pressure and Q1

elements for the velocity leads to a better approximation for the incompressibility. Testing

the divergence constraint with the indicator function 1K ∈ Qh yields∫
K

divuh dx = 0 ∀K ∈ Th (2.8)

and the numerical solution is locally mass conservative. However, the Q1/Q0 element is in

general not stable [BBF08]. Thus the variational formulation has to be stabilized in order

to get reasonable results.

In the next subsection we will examine an element pair that is stable and locally mass

conservative. Furthermore, it is not much more expensive than the Taylor-Hood element

meaning that the resulting linear system is not much larger.

2.1 Inf-sup stability for the Qk+1/(Qk + Q0) element

In [BCGG12] Boffi, Cavallini, Gardini and Gastaldi have shown based on the inf-sup

stability of the Taylor-Hood pair Pk+1/Pk that the element coupling Pk+1/(Pk + P0)
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defined by

Vh = {v ∈ H1
0 (Ω)d : v|K ∈ Pk+1(K)d ∀K ∈ Th}

Qh = {q ∈ L2
0(Ω) : q = qk + q0, qk ∈ C(Ω), qk|K ∈ Pk(K), q0|K ∈ P0(K) ∀K ∈ Th}.

(2.9)

is stable on simplicial meshes. In this section we want to prove in a analogous way that

this result also holds for the case of quadrilateral or hexahedral elements.

It turns out that the following inf-sup condition is essential for the solvability of the

discretized Stokes problem.

Definition 2.3 (Inf-sup condition). The pair (Vh, Qh) is said to fulfill the inf-sup condition

if there exists β > 0 independent of h such that

inf
qh∈Qh
qh 6=0

sup
vh∈Vh
vh 6=0

b(vh, qh)

‖vh‖V ‖qh‖Q
≥ β, (2.10)

Instead of showing the stability directly we make use of the macroelement technique

introduced by Stenberg in [Ste84].

Definition 2.4 (Macroelement). A macroelement M is a polytope which is the union of

adjacent elements. Two macroelement M, M̂ are said to be equivalent if there exists a

mapping FM : M̂ →M such that

1. FM is continuous and invertible.

2. If M̂ =
⋃m
j=1 K̂j where K̂j are the elements defining M̂ , then Kj = FM(K̂j) are the

elements of M .

3. FM |K̂j = FKj ◦ F−1

K̂j
∀j ∈ {1, . . . ,m} where FK denotes the affine mapping from

the reference element to a generic element K.

For a macroelement M we introduce the following discrete spaces V0,M and QM

V0,M = {v ∈ H1
0 (M)d : ∃w ∈ Vh with v = w|M}

QM = {q|M with q ∈ Qh}
(2.11)

and also the space of spurious pressure modes on M

NM = {q ∈ QM :

∫
M

q div v dx = 0 ∀v ∈ V0,M}. (2.12)
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Using this definitions we get some easy to check criteria for the inf-sup condition.

Theorem 2.5. Let Mh be a macroelement partition of the elements of Th such that

(H1) for each M ∈Mh the space NM is one-dimensional and consists of functions which

are constant on M ;

(H2) each M ∈Mh belongs to an equivalence class of macroelements;

(H3) the number of equivalence classes of macroelements is finite and independent of h;

(H4) each element K ∈ Th is contained in a finite number N of macroelements M ∈Mh,

with N independent of h;

(H5) the inf-sup condition between Vh and the space of elementwise constant pressure

functions Q0 holds true.

Then the choice of spaces Vh and Qh satisfies the inf-sup condition.

Proof. This is a consequence of Proposition 4.8 and Remark 4.7 in [BBF08].

We now consider the following approximation spaces that are based on these polynomial

spaces.

Vh = {v ∈ H1
0 (Ω)d : v|K ∈ Qk+1(K)d ∀K ∈ Th} (2.13)

Qh = {q ∈ L2
0(Ω) : q = qk + q0, qk ∈ C(Ω), qk|K ∈ Qk(K), q0|K ∈ Q0(K) ∀K ∈ Th}.

(2.14)

We first treat here the three-dimensional case.

Proposition 2.6. Define a macroelement partition Mh by grouping together, for each

internal vertex x0, those vertex elements that touch x0. Then for the three-dimensional

case (d = 3) the space of spurious pressure modes NM is one-dimensional, consisting of

globally constant functions in M for each M ∈Mh.

Proof. First of all we consider the polynomial w̃ = 4x(1− x)(1− y)(1− z) ∈ Q2 on the

reference cell. The properties of interest are:

(P1) The value of w̃ on the plane {y = 0} just depends on x and z.

(P2) On the plane {z = 0} w̃ only varies with x and y.

(P3) The function vanishes on the four planes {x = 0}, {x = 1}, {y = 1} and {z = 1}.
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(P4) w̃ is linear with respect to y and z individually.

(P5) w̃(x, y, z) ≥ 0 ∀(x, y, z) ∈ [0, 1]3.

(P6) w̃(x, y, z) = w̃(x, z, y) ∀(x, z) ∈ [0, 1]2.

Let x0 be an arbitrary internal vertex and consider the associated macroelement M ∈Mh.

A generic hexahedron element K0 ∈ Th of M has three edges ei, i = 1, 2, 3 that meet at x0.

We choose a coordinate system in such a way that e1 lies on the x-axis.

We want to prove that ∇p vanishes on K0 due to the macroelement condition (2.12).

Therefore, consider the set A = {K0, . . . , Kn} of elements in Th that share e1. Obviously

each K ∈ A has exactly two faces with other elements in A in common. Next we denote

by Fi an invertible bilinear mapping from Ki to the reference cell that satisfies:

• The two faces of Ki which are in common with other elements in A are mapped to

the {z = 0} and {y = 0} plane.

• Fi is the identity on e1.

• Vertices are mapped onto vertices.

Now we are able to construct a polynomial for a given q ∈ QM that gives us the desired

property:

w|Ki =

(
(w̃ ◦ F−1

i )
∂p

∂x

∣∣∣∣
Ki

, 0, 0

)
i = 1, . . . , n,

w|K = 0 ∀K ∈ Th \ A.

(2.15)

The constructed polynomial vanishes in M \ A and is continuous in Ki ∪ (M \ A) due

to properties (P1)-(P3). The continuity of ∇p on the faces between elements in A in all

tangential directions then ensures together with properties (P1) and (P2) the continuity

of w on these interfaces and finally in the whole set M .

Due to the fact that Fi preserves the x-direction, ∂p
∂x
◦ Fi is of the form

∂p

∂x
∈ span{xryszt, 0 ≤ r ≤ k − 1, 0 ≤ s, t ≤ k} (2.16)

in Ki. The function w̃ ◦ F−1
i ◦ Fi = w̃ is quadratic in x and linear in y and z due to

property (P4). Therefore, we get

((w̃ ◦ F−1
i )

∂p

∂x

∣∣∣∣
Ki

) ◦ Fi ∈ span{xryszt, 0 ≤ r, s, t ≤ k + 1} = Qk+1. (2.17)
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Thus, we have the desired result

w ∈ V0,M (2.18)

and are allowed to test the macroelement condition (2.12) with this function. This yields

0 =

∫
M

q divw dx =
n∑
i=1

(∫
∂Ki

qw · n dx−
∫
Ki

∇q ·w dx

)

=
n∑
i=1

∫
Ki

(w̃ ◦ F−1
i )

(
∂q

∂x

∣∣∣∣
Ki

)2 (2.19)

where
∫
∂Ki

qw · n dx disappears due to the choice of w. The function (w̃ ◦ F−1
i ) is

non-negative in Ki for all i = 1, . . . , n because of (P5). Hence, we can conclude that the

first component of ∇q vanishes. The same argumentation can then be applied to the

edges e2 and e3. This gives us that ∇qk|Ki disappears and therefore that q is elementwise

constant in M .

All that is left, is to show that q is constant in M .

Consider two neighboring elements K+ and K− in M and let q± be the constant pressures.

We now choose a coordinate system in which the interface Γ between K+ and K− lies

in the xy-plane. By F± we denote an invertible bilinear mapping from the reference

cell to K±, that reduces to the identity in the xy-plane and maps vertices onto vertices.

Furthermore, we consider the function ũ = x(1 − x)y(1− y)(1− z) ∈ Q2. Then we are

able to define the function u by

u|K± = (0, 0, ũ ◦ F±),

u|K = 0 ∀K ∈ Th \ (K+ ∪K−)
(2.20)

Since ũ vanishes on all faces except for the xy-plane u is continuous in M and is by

definition an element of Q2(K+ ∪K−).

This gives the inclusion

u ∈ V0,M (2.21)

and we are allowed to test the macroelement condition (2.12) with it

0 =

∫
M

q divu dx = q+

∫
K+

divu dx+ q−
∫
K−

divu dx = (q+ − q−)

∫
Γ

u · n dx. (2.22)

Since ũ is a non-negative function in [0, 1]3 that is not identically to zero, we can conclude
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that the pressure q+ has to be equal to q−. Because of the fact that the neighboring

elements were chosen arbitrarily, we can finally conclude that p is constant in M .

Remark 2.7. Up to the point where we showed that an arbitrary q ∈ NM has to be

elementwise constant the same proof works for the hexahedral Taylor-Hood element

Vh = {v ∈ H1
0 (Ω)d : v|K ∈ Qk+1(K)3 ∀K ∈ Th}

Qh = {q ∈ L2
0(Ω) ∩ C(Ω) : q|K ∈ Qk(K) ∀K ∈ Th}.

(2.23)

We can then simply conclude that q has to be constant on M since q is continuous.

The next theorem is dedicated to the two-dimensional case.

Proposition 2.8. Define a macroelement partition Mh by grouping together, for each

internal vertex x0, those vertex elements that touch x0. Then for the two-dimensional case

(d = 2) the space of spurious pressure modes NM is one-dimensional, consisting of globally

constant functions in M for each M ∈Mh.

Proof. The proof works similar for the two-dimensional case although there are some

simplifications. Consider again an arbitrary internal vertex x0 and the associated macroele-

ment M ∈ Mh. Furthermore, we choose two neighboring elements K+ and K− in M .

Additionally, choose a coordinate system such that the common edge e1 lies on the x-axis.

Let F± be an invertible bilinear mapping from the reference cell to K± that leaves the

x-direction invariant and maps vertices onto vertices. Then we define for a generic q ∈ NM

a function w in M by

w|K± =

(
w̃ ◦ F−1

±
∂q

∂x
, 0

)
(2.24)

w|K = 0 ∀K ∈M \ {K+, K−}. (2.25)

where w̃ is defined by w̃ = x(x− 1)(1− y) ∈ Q2. Since ∂q
∂x

is continuous on e1 and w̃ ◦F−1
±

vanishes on ∂K± \ e1, the function w is continuous in M . Furthermore, w̃ is quadratic in

x and linear in y and q ◦ F± ∈ Qk. Thus, we achieve the inclusions

(w̃ ◦ F−1
±

∂q

∂x
) ◦ F± ∈ Qk+1 (2.26)

w ∈ V0,M . (2.27)

This means that we can test the macroelement condition (2.12) with w.

0 =

∫
M

q divw dx =

∫
e1

qw · n dx−
∫
K+∪K−

∇q ·w dx (2.28)
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=

∫
K+

(w̃ ◦ F−1
+ )

(
∂q

∂x

∣∣∣∣
K+

)2

dx+

∫
K−

(w̃ ◦ F−1
− )

(
∂q

∂x

∣∣∣∣
K−

)2

dx (2.29)

where
∫
e1
qw · n dx disappears due to the choice of w. Since w̃ is a non-negative function

that is not identically to zero, we conclude that the first component of ∇q vanishes on K±.

It can be shown analogously that the second component vanishes. So q is elementwise

constant in M .

Finally, it has to be shown that these constants are in fact the same.

Again, we consider two neighboring elements K+ and K− and choose a coordinate system

as before. The constants on the elements K± are denoted by q± respectively. Then we

can define a function u ∈ Q2(K+ ∪K−) by

u|K± =
(
0, w̃ ◦ F−1

±
)

u|K = 0 ∀K ∈M \ (K+ ∪K−).
(2.30)

By the same argument as before w is continuous and vanishes on ∂M , giving u ∈ V0,M .

Applying the macroelement condition (2.12) then yields

0 =

∫
M

q divu dx = q+

∫
K+

divu dx+ q−
∫
K−

divu dx = (q+ − q−)

∫
Γ

u · n dx. (2.31)

w̃ is a non-negative function that does not vanish identically on e1 and thus q+ and q−

are the same. Since K+ and K− were chosen arbitrarily, q has to be constant in M .

Remark 2.9. Up to the point where we showed that an arbitrary q ∈ NM has to be

elementwise constant the same proof works for the quadrilateral Taylor-Hood element

Vh = {v ∈ H1
0 (Ω)d : v|K ∈ Qk+1(K)2 ∀K ∈ Th}

Qh = {q ∈ L2
0(Ω) ∩ C(Ω) : q|K ∈ Qk(K) ∀K ∈ Th}.

(2.32)

We can then simply conclude that q has to be constant on M since q is continuous.

After these extensive preparations the inf-sup condition follows quite easily.

Theorem 2.10. Let Th be a regular family of quadrilateral (d = 2) or hexahedral (d = 3)

decompositions of Ω. Then the following spaces

Vh = {v ∈ H1
0 (Ω)d : v|K ∈ Qk+1(K) ∀K ∈ Th}

Qh = {q ∈ L2
0(Ω) : q = qk + q0, qk ∈ C(Ω), qk|K ∈ Qk(K), q0|K ∈ Q0(K) ∀K ∈ Th}

with d ∈ {2, 3} and k ∈ N>0 satisfy the inf-sup condition (2.3).
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Proof. Due to Theorem 2.5 we have to check the five hypotheses (H1)-(H5).

(H1) was proved in Proposition 2.8 respectively Proposition 2.6. (H2) and (H4) hold due

to the choice of the macroelements. (H3) is a consequence of the regularity assumption.

It is well known that the choice of spaces

Vh = {v ∈ H1
0 (Ω)d : v|K ∈ Qk+1(K) ∀K ∈ Th}

Ph = {q ∈ L2
0(Ω) : q|K ∈ Pk(K) ∀K ∈ Th}

(2.33)

satisfies the inf-sup condition for each k ∈ N>0 as shown in [MT02]. In particular, this

means that the inf-sup condition between Vh and the space of elementwise constant

functions holds true due to

Q0(K) ⊂ Pk(K) ∀k ∈ N0. (2.34)

Therefore, (H5) is fulfilled.

Remark 2.11. Conditions (H2)-(H5) do not depend on the choice of the pressure space Qh

and for the case of the two- and three-dimensional Taylor-Hood element Remark 2.9 and

Remark 2.7 show (H1) respectively. This means, that in this way we can prove the inf-sup

condition for the Taylor-Hood element.

2.2 Approximation results

Now that we proved the inf-sup stability we can use the usual results for the discretized

Stokes problem.

The existence and uniqueness result Theorem 2.1 has a discrete counterpart.

Theorem 2.12. Let (u, p) ∈ V × Q be the solution to (2.2) and suppose that (Vh, Qh)

fulfills the inf-sup condition (2.10). Then there exists a unique solution (uh, ph) ∈ Vh ×Q
to the discretized Stokes problem and the following estimate holds

‖u− uh‖V + ‖p− ph‖Q ≤ C inf
vh∈Vh
qh∈Qh

{‖u− uh‖V + ‖p− qh‖Q} (2.35)

Proof. cf. [GR86, p. 114].

In combination with the approximation result we achieve the following convergence result.

Theorem 2.13. Let Ω ⊂ Rd be a bounded domain with Lipschitz-continuous boundary

and Th a regular triangulation of Ω.
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If the solution to the Stokes problem (2.2) satisfies the regularity assumptions

u ∈ [Hk+1(Ω) ∩H1
0 (Ω)]d, p ∈ Hk(Ω) ∩ L2

0(Ω) (2.36)

for some k ∈ N>0, then for the discrete solution (uh, ph)

‖u− uh‖V + ‖p− ph‖Q ≤ C1h
k+1(‖u‖[Hk+1(Ω)]d + ‖p‖Hk(Ω)) (2.37)

holds where C1 is a constant independent of the maximal cell diameter h. If the domain Ω

is furthermore convex, the error of the velocity can be limited by

‖u− uh‖0,Ω ≤ C2h
k+2(‖u‖[Hk+1(Ω)]d + ‖p‖Hk(Ω)), (2.38)

where also C2 does not depend on h.

Proof. cf. [GR86, p. 125-127].

2.3 Implementation

The first part of the following subsection is devoted to some remarks about the problems

that have to be faced when implementing and using the Qk +Q0 element. In the second

part we discuss the actual implementation of the Stokes problem.

2.3.1 The discontinuous element

We implemented the element Qk + Q0 in the finite element library deal.II([BHK],

[BHK07]) as FE Q DG0. This was mainly done by extending the existing polynomial

class TensorProductPolynomialSpace to TensorProductPolynomialSpaceConstant by

adding an additional constant function. Furthermore, the class FE Q was modified to suit

the new polynomial space. This implementation and its documentation can be found in

version 7.3 of the previous mentioned library (see [FEQ12]).

When using this element one has to be aware that the sum Qk +Q0 is not direct since

a global constant function can be represented by functions in Qk and Q0 separately.

Therefore, a mass matrix Aij =
∫

Ω
φiφj dx formed with this element has exactly one zero

eigenvalue. One possibility to ensure the invertibility is to impose an additional constraint,

e.g. setting the sum of the values of the discontinuous functions to zero. In order to

reduce the coupling between discontinuous nodes, we set just the sum of the discontinuous

functions on the boundary to zero in our implementations.



2 STOKES EQUATIONS 17

In the case of a stiffness matrix Aij =
∫

Ω
∇φi · ∇φj dx the number of additional zero

eigenvalues equals the number of cells in the triangulation. This is due to the fact that a

(weak) solution to a Poisson equation remains a solution after changing it by a constant on

one element. In order to deal with this behavior, one has to introduce some connectivity

information between the cells in the problem. We discuss a suitable approach in Section 3.

2.3.2 The Stokes equation

For solving the Stokes equation in deal.II the tutorial program step-22 was modified by

the author. This modification may be found in the test suite in the deal.II subversion

repository1.

For the implementation we use 2(S(u),S(v))[L2(Ω)]d with the symmetric gradient tensor

S(u) instead of the diffusion term (∇u,∇v)[L2(Ω)]d . The following lemma gives us the

equivalence of these two formulations.

Lemma 2.14. Let u,v ∈ [H1
0 (Ω)]d be two solenoidal functions. Then

(S(u),S(v))[L2(Ω)]d = (∇u,∇v)[L2(Ω)]d (2.39)

where the symmetric strain rate tensor S is given by S(u) = 1
2

[
∇u+ (∇u)T

]
.

Proof.

2(S(u),S(v))[L2(Ω)]d =
d∑

i,j=1

1

2

∫
Ω

(
∂ui
∂xj

∂uj
∂xi

)(
∂vi
∂xj

+
∂vj
∂xi

)
dx

=
1

2

d∑
i,j=1

∫
Ω

∂ui
∂xj

∂vi
∂xj

+
∂uj
∂xi

∂vj
∂xi

+
∂ui
∂xj

∂vj
∂xi

+
∂uj
∂xi

∂ui
∂xj

dx

=
d∑

i,j=1

∫
Ω

∂ui
∂xj

∂vi
∂xj

dx+
d∑

i,j=1

∫
Ω

∂ui
∂xj

∂vj
∂xi

dx

= (∇u,∇v)[L2(Ω)]d +

∫
Ω

d∑
i=1

∂ui
∂xi

d∑
j=1

∂vj
∂xj

dx

= (∇u,∇v)[L2(Ω)]d +

∫
Ω

divu div v dx = (∇u,∇v)[L2(Ω)]d

1https://svn.dealii.org/trunk/tests/fe/fe_q_dg0

https://svn.dealii.org/trunk/tests/fe/fe_q_dg0
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Starting from the weak formulation of the Stokes equations (2.5), the implemented

discretization reads

Find (uh, ph) ∈ Vh ×Qh :

2ν(S(uh),S(vh))[L2(Ω)]d−(ph, div vh)L2(Ω) = (f ,vh)[L2(Ω)]d ∀vh ∈ Vh

(divuh, qh)L2(Ω) = 0 ∀qh ∈ Qh.

(2.40)

This naturally leads to the following linear system for the nodal values of the velocity U

and the pressure P (
A BT

B 0

)(
U

P

)
=

(
F

0

)
(2.41)

that exhibits a saddle point structure. In order to solve this system, we make use of

the Schur complement S = −BA−1BT . The first equation can then be transformed to

U = A−1F − A−1BTP . Inserting this into the second one eliminates the velocity and we

obtain an equation for the pressure P alone

SP = −BA−1BTP = −BA−1F. (2.42)

Then the velocity is retrieved by the equation

AU = F −BTP. (2.43)

The interesting question that now arises is how to choose the solvers and preconditioners

for these problems. The choice for the Schur complement is based on the following result

from [ESW05, Theorem 5.22, p.270].

Theorem 2.15. For a inf-sup stable finite element pair on a regular, quasi-uniform

triangulation Th the Schur complement S = −BA−1BT is spectrally equivalent to the

pressure mass matrix MP :

β2 ≤ qTBA−1BT q

qTMpq
≤ 1 ∀q ∈ Rnp , q 6∈ 0, 1 (2.44)

where np is the dimension of the pressure mass matrix Mp and β > 0 the inf-sup constant.

Furthermore, the condition number satisfies cond(S) ≤ C/(cβ2) where c and C are

constants that fulfill

chd ≤ qTMpq

qT q
≤ Chd ∀q ∈ Rnp , q 6= 0. (2.45)
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Due to the symmetry ofA also the Schur complement is symmetric, i.e. ST = (−BA−1BT )T =

−BA−TBT = −BA−1BT = S, and thus we can use a CG solver. Due to the previous

result we use a pressure mass matrix for preconditioning.

Next we have to think about inverting A. This matrix is related to the Laplace operator

because it is equivalent to the symmetric gradient tensor. The following theorem from

[ESW05, Theorem 1.32., p.59] gives an upper bound for the condition of such a matrix.

Theorem 2.16. On a regular, quasi-uniform triangulation Th the Poisson matrix A ∈
Rnv×nv given by aij =

∫
Ωφjφi dx satisfies

chd ≤ vTAv

vTv
≤ Chd−2 ∀v ∈ Rnv . (2.46)

The condition is bounded by cond(A) ≤ C/ch−2.

So the matrix is ill-conditioned. Since we have to solve with this matrix both in the

Schur complement and for retrieving the velocity it is worth to spend more effort in the

preconditioner. This is the reason why we choose a direct sparse LU decomposition. Since

A is symmetric, we use a CG solver.

Remark 2.17. The described procedure using gradient methods is equivalent to Uzawa’s

algorithm [BF91, II.5.1]:

1. Let p0 be chosen arbitrarily,

2. pn being given, find un+1 as solution of

a(un+1, v) = f(v)− b(v, pn) ∀v ∈ V ,

3. compute pn+1 using with ρ small enough

(pn+1 − pn, q) = ρ b(un+1, q) ∀q ∈ Q

4. stop whenever ‖pn+1 − pn‖Q is small enough, otherwise go to step 2.

Another idea for solving the coupled system is the use of a block solver and block

preconditioner. We follow such an approach for solving the discretized Navier-Stokes

problem in Section 4.
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2.4 Numerical results

In this section we will investigate the numerical performance of the discussed element.

Therefore, we consider the stationary Stokes equation with the following reference solution

u = (∂yψz,−∂xψz), (2.47)

p =

y(1− y)exp(x− 1/2)2 + 1/2 x ≤ 1/2,

y(1− y)exp(x− 1/2)2 − 1/2 x > 1/2.
(2.48)

where ψz is determined by

ψz = x2(x− 1)2y2(y − 1)2. (2.49)

We choose the right-hand side in a way that the reference solution solves the Stokes

problem

f = −∆u+∇p. (2.50)

Furthermore, we like to have a discontinuity in the pressure solution. To obtain this we

take the term

〈f ,v〉 =

∫
Ω

f · v dx+
∑
K∈Th

1

2

∫
∂K

[[p]] · v dx (2.51)

in the variational formulation into account. Such a term appears in the continuum surface

model [BKZ92] that makes it possible to solve two-phase flows in one equation.

2.5 Convergence results

We are interested in the difference between a solution that uses Qk +Q0 elements and

one that uses Qk elements for the pressure. In both cases Qk+1 elements are used for the

velocity.

Figure 2.4 now shows as expected the difficulties the continuous elements has to ap-

proximate the reference pressure solution. Also the velocity solution shows artifacts at

the discontinuous pressure edge (Figure 2.5). The discontinuity reduces the order of

convergence for the pressure by a half as can be seen in Table 2.1. Even stronger affected

are the velocity, the gradient and the divergence of the velocity. In all three cases the

order of convergence is reduced by 1.5.

On the contrary, the discontinuous element does not suffer these problems. Figure 2.6

shows that even for a rather coarse grid the pressure approximation is quite good compared
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Figure 2.1: Reference velocity solution x-component
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Figure 2.2: Reference velocity solution y-component
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Figure 2.3: Reference pressure solution

Table 2.1: Spatial convergence for the Q2/Q1 element

#cells ‖u− uh‖L2 |u− uh|H1 ‖ divuh‖L2 ‖p− ph‖L2

4 1.026e-02 - 1.188e-01 - 1.114e-01 - 2.512e-01 -
16 4.852e-03 1.08 9.199e-02 0.37 8.847e-02 0.33 1.891e-01 0.41
64 1.820e-03 1.41 6.625e-02 0.47 6.500e-02 0.44 1.343e-01 0.49

256 6.537e-04 1.48 4.717e-02 0.49 4.673e-02 0.48 9.498e-02 0.50
1024 2.329e-04 1.49 3.347e-02 0.50 3.331e-02 0.49 6.716e-02 0.50
4096 8.265e-05 1.49 2.370e-02 0.50 2.365e-02 0.49 4.749e-02 0.50

16384 2.928e-05 1.50 1.678e-02 0.50 1.676e-02 0.50 3.358e-02 0.50
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Figure 2.4: Pressure solution with the Q2/Q1 element
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to the continuous case. Additionally, no artifacts can be seen in the velocity solution(2.7.

Table 2.2 also reveals that none of the convergence rates for pressure and velocity are

affected by the discontinuity in the reference solution. This result is confirmed by the

results for a Q3/(Q2 +Q0) discretization in Table 2.3.
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Figure 2.6: Pressure solution with the Q2/(Q1 +Q0) element

Table 2.2: Spatial convergence for the Q2/(Q1 +Q0) element

#cells ‖u− uh‖L2 |u− uh|H1 ‖ divuh‖L2 ‖p− ph‖L2

4 1.267e-03 - 1.783e-02 - 1.017e-02 - 2.085e-02 -
16 1.714e-04 2.89 4.500e-03 1.99 2.991e-03 1.77 5.231e-03 2.00
64 2.151e-05 2.99 1.118e-03 2.01 7.756e-04 1.95 1.304e-03 2.00

256 2.687e-06 3.00 2.787e-04 2.00 1.960e-04 1.98 3.258e-04 2.00
1024 3.357e-07 3.00 6.962e-05 2.00 4.916e-05 2.00 8.146e-05 2.00
4096 4.204e-08 3.00 1.740e-05 2.00 1.230e-05 2.00 2.037e-05 2.00

16384 6.026e-09 2.80 4.352e-06 2.00 3.078e-06 2.00 5.101e-06 2.00

Furthermore, Table 2.4 shows that the solution achieved by the Q1 + Q0 element is

numerically local conservative, i.e.

max
k
|(divuh, 1)L2(K)| ≈ 0. (2.52)
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Figure 2.7: Solution of the first velocity component with the Q2/(Q1 +Q0) element

Table 2.3: Spatial convergence for the Q3/(Q2 +Q0) element

#cells ‖u− uh‖L2 |u− uh|H1 ‖ divuh‖L2 ‖p− ph‖L2

4 1.002e-04 - 1.968e-03 - 1.795e-03 - 3.744e-04 -
16 6.154e-06 4.03 2.351e-04 3.07 2.281e-04 2.98 3.963e-05 3.24
64 3.815e-07 4.01 2.898e-05 3.02 2.872e-05 2.99 5.187e-06 2.93

256 2.378e-08 4.00 3.609e-06 3.01 3.600e-06 3.00 6.610e-07 2.97
1024 1.486e-09 4.00 4.506e-07 3.00 4.503e-07 3.00 8.372e-08 2.98
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Table 2.4: Local mass conservation

#cells Q2/Q1 Q2/(Q1 +Q0) Q3/(Q2 +Q0)

4 1.30500e-02 1.35106e-17 2.22681e-09

16 5.54285e-03 1.21998e-08 6.62999e-09

64 1.42973e-03 2.45045e-09 1.54363e-09

256 3.57486e-04 5.50899e-09 1.37852e-09

1024 8.93714e-05 7.64287e-10 9.66402e-10

4096 2.23428e-05 1.83063e-10 4.39099e-10

16384 5.58570e-06 1.38260e-10 1.75149e-10

However, this does not mean that the pressure solution is pointwise solenoidal. Figure 2.8

clearly shows that the divergence is discontinous across element boundaries and vanishes

only in average on each element.

Figure 2.8: Pointwise divergence for the Q2/(Q1 +Q0) pair

2.6 Computational costs

Finally, we compare the computational effort that has to be used for the element pairs

Q2/(Q1 +Q0) and Q2/Q1.

In Table 2.5 the number of degrees of freedom for both solution components is listed. Since

both pairs use a Q2-approximation for the velocity the number of dofs are the same. The

used pressure spaces differ by exactly one degree of freedom per cell. Therefore there are as

many dofs more for the discontinuous approximation as there are cells in the triangulation.

In our case of a first order approximation this number nearly doubles.
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Table 2.5: Number of degrees of freedom (dofs) for the Q2/(Q1 + Q0) element and the
Q2/Q1 element

# cells 4 16 64 256 1024 4096 16384
# velocity dofs 50 162 578 2178 8450 33282 132098
# pressure dofs Q2/(Q1 +Q0) 13 41 145 545 2113 8321 33025
# pressure dofs Q2/Q1 9 25 81 289 1089 4225 16641

Nevertheless, the number of degrees of freedom for the pressure is in both cases much

smaller than the number of dofs for the velocity. Therefore, it is not surprising that

the assembling does not take much more time using the discontinuous elements (Table

2.6). However, for solving the linear equations there seems to be a significant difference

between the two approximations. Whereas the solver time is comparable for the coarsest

triangulations, solving takes nearly twice the time for a discontinuous approximation on

the finest mesh. Apart from that Table 2.6 shows that the preconditioner for the Schur

complement is well chosen. The number of needed iterations is nearly the same for all

mesh sizes and both approximations.

Table 2.6: Comparison of running time and solver iterations between the Q2/Q1 pair and
the Q2/(Q1 +Q0) pair

time for assembling time for solving solver iterations
#cells Q2/(Q1 +Q0) Q2/Q1 Q2/(Q1 +Q0) Q2/Q1 Q2/(Q1 +Q0) Q2/Q1

4 6.3 · 10−4 8.4 · 10−4 3.7 · 10−4 3.5 · 10−4 6 5
16 1.3 · 10−3 2.1 · 10−3 1.0 · 10−3 1.4 · 10−3 9 9
64 5.9 · 10−3 8.8 · 10−3 5.3 · 10−3 4.3 · 10−3 10 9

256 2.6 · 10−2 2.8 · 10−2 2.2 · 10−2 1.5 · 10−2 9 9
1024 1.2 · 10−1 1.2 · 10−1 1.6 · 10−1 1.0 · 10−1 10 9
4096 7.3 · 10−1 7.3 · 10−1 1.1 · 100 7.3 · 10−1 10 10

16384 4.0 · 100 4.0 · 100 5.5 · 100 3.2 · 100 10 10

Summarizing the numerical results, the use of the Q2/(Q1 + Q0) improves the mass

conservation much. Furthermore, the order of convergence in cases, where the pressure is

discontinuous, benefits significantly by the choice of the new element pair. Of course, the

computational costs using the discontinuous are higher. Surprisingly, only the solver but

not the assembling was affected.





3 Discontinuous Galerkin methods for the Poisson

equation

Up to now we have considered only problems where the pressure is approximated by func-

tions in L2(Ω). In particular we imposed no differentiability assumptions on the discrete

pressure space. However, when using projection methods for solving incompressible flow

problems one needs to solve a Poisson equation for the pressure. We will face the same

problem for the construction of a suitable preconditioner for our Navier-Stokes solver

in 4.2. In these cases obviously at least weak differentiability of the discrete pressure is

needed. Although the spaces ∇Qk and ∇(Qk +Q0) are the same, some difficulties arise

when moving from continuous to discontinuous elements.

In this section we discuss suitable approaches for solving a Poisson equation with dis-

continuous ansatz functions. We roughly follow the paper [ABCM02] by Arnold and the

presentation in [Har08] by Hartmann.

3.1 Notations

In order to be able to work on a non-discrete level with functions that are potentially

discontinuous, we have to define a space that allows us to use Sobolov space function on

each element of a finite element triangulation.

Definition 3.1 (Broken Sobolev space). Let Th be a triangulation for the domain Ω.

We define by Hk(Th) the broken Sobolev space whose restriction to each element K ∈ Th
belongs to the Sobolev space Hk(K), i.e.

Hk(Th) := {f ∈ L2(Ω) : v|K ∈ Hk(K) ∀K ∈ Th}.

Function in this space are typically discontinuous across element borders and therefore

double-valued on the interior boundaries. The following definition gives the necessary

notation for this situation.

Definition 3.2 (Traces). For a function f ∈ H1(Th) we denote by f± the traces from

within and from without of a considered element K on the boundary ∂K. The traces of

functions in H1(Th) then belong to T (Γ) :=
∏

K∈Th L
2(∂K) where Γ is the union of the

boundaries of the elements K. Note that the traces are single-valued on ∂Ω and f− = f+.
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3.2 Primal flux formulation

The aim of this section is to solve a Poisson problem on a domian Ω using Neumann

conditions on ΓN and Dirichlet boundary conditions on ΓD = ∂Ω \ ΓN . In the given setup

the problem reads in

Find u ∈ H1(Th) such that

−∆u(x) = f(x) ∀x ∈ Ω

∇u(x) · n(x) = g(x) ∀x ∈ ΓN

u(x) = h(x) ∀x ∈ ΓD.

(3.1)

By introducing a new variable σ ∈ [H1(Ω)]d these equations can be rewritten as the

first-order system

Find (u,σ) ∈ H1(Th)× [H1(Ω)]d such that

σ(x) = ∇u(x) ∀x ∈ Ω

−∇ · σ(x) = f(x) ∀x ∈ Ω

∇u(x) · n(x) = g(x) ∀x ∈ ΓN

u(x) = h(x) ∀x ∈ ΓD.

(3.2)

where n(x) denotes the unit normal vector. The variational formulation is then given by

multiplying the equations with τ ∈ [H1(Th)]d resp. v ∈ H1(Th) and integrating over an

element K ⊂ Ω ∫
K

σ · τ dx = −
∫
K

u∇ · τ dx+

∫
∂K

uτ · n dx∫
K

σ · ∇v dx =

∫
K

f v dx+

∫
∂K

σ · nv dx.
(3.3)

Since the functions we consider here are discontinuous, the boundary terms do not cancel

out when we sum over all elements. The resulting system flux formulation reads∫
Ω

σ · τ dx = −
∫

Ω

u∇ · τ dx+
∑
K∈Th

∫
∂K

ûτ · n dx ∀τ ∈ [H1(Th)]d (3.4)∫
Ω

σ · ∇v dx =

∫
Ω

f v dx+
∑
K∈Th

∫
∂K

σ̂ · nv dx ∀v ∈ H1(Th). (3.5)

where û is a scalar numerical flux function and σ̂ is a vector-valued numerical flux function.

All the in this section considered models differ only by the choice of these two functions

and hence all properties of the discretizations depend on the fluxes.
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Definition 3.3 (Consistency, conservativity). The numerical fluxes û and σ̂ are called

consistent if

û(v) = v, σ̂(v,∇v) = ∇v on Γ (3.6)

whenever v is a smooth function. Furthermore, we say that û and σ̂ are conservative if

they are single-valued on Γ.

Now we want to reduce the size of the problem by eliminating the variable σ. Therefore,

we perform another integration by parts in (3.4) and set τ = ∇v∫
Ω

σ · ∇v dx =

∫
Ω

∇u · ∇v dx+
∑
K∈Th

∫
∂K

(û− u)n · ∇v dx. (3.7)

Substituting (3.7) into (3.5) gives with the bilinear form B̂(·, ·) : H2(Th)×H2(Th)→ R

B̂(u, v) =

∫
Ω

∇u · ∇v dx−
∑
K∈Th

∫
∂K

σ̂ · nv dx+
∑
K∈Th

∫
∂K

(û− u)n · ∇v dx (3.8)

the element-based primal flux formulation

B̂(u, v) =

∫
Ω

f v dx ∀v ∈ H2(Th). (3.9)

Next we want to have a face-based form, i.e. a formulation in terms of
∫

Γ
, instead of

the element-based form, i.e. the formulation in terms of
∫
∂K

in which every interior face

occurs twice. Before doing this we again need to describe some operators on boundaries of

elements.

Definition 3.4 (Mean value and jump operator). Let e ∈ Γ \ ∂Ω := Γ \ ∂Ω be an

interior face between two adjacent elements K+ and K− with unit outward normal vectors,

n+,n− ∈ Rd. Let q ∈ T (Th) and φ ∈ [T (Th)]d be the traces of a scalar and a vector valued

function. Then, we define the mean value and the jump operator, {{·}} and [[·]], as follows

{{q}} =
1

2
(q+ + q−) [[q]] = q+n+ + q−n−

{{φ}} =
1

2
(φ+ + φ−) [[φ]] = φ+ · n+ + φ− · n−.

(3.10)

On boundary edges e ∈ ∂Ω the mean value and jump operators are defined by

{{q}} = q+ [[q]] = q+n+

{{φ}} = φ+ [[φ]] = φ+ · n+.
(3.11)
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Now we are able to express the discretization in terms of integrals over the interior faces

Γ. The equivalence of these two formulations is proved in the following Lemma.

Lemma 3.5. The element-based primal flux form (3.9) is equivalent to the face-based

primal flux form

Find u ∈ H2(Th)such that

Ĉ(u, v) =

∫
Ω

f v dx ∀v ∈ H2(Th)
(3.12)

where C(·, ·) is defined by

Ĉ(u, v) :=

∫
Ω

∇u · ∇v dx+

∫
Γ

([[û− u]] · {{∇v}} − {{σ̂}} · [[v]]) dx

+

∫
Γ\∂Ω

({{û− u}}[[∇v]]− [[σ̂]]{{v}}) dx.
(3.13)

Proof. Let q ∈ T (Th) and φ ∈ [T (Th)]d. Then we get∫
Γ\∂Ω

{{φ}} · [[q]] + [[φ]]{{q}} dx

=
1

2

∫
Γ\∂Ω

(
φ+ + φ−

)
·
(
q+n+ + q−n−

)
+
(
φ+ · n+ + φ− · n−

) (
q+ + q−

)
dx

=
1

2

∫
Γ\∂Ω

φ+ · n+q+ + φ+ · n−q− + φ− · n+q+ + φ− · n−q− dx

+
1

2

∫
Γ\∂Ω

φ+ · n+q+ + φ+ · n+q− + φ− · n−q+ + φ− · n−q− dx

=

∫
Γ\∂Ω

φ+ · n+q+ + φ− · n−q− dx

=
∑
K∈Th

∫
∂K\∂Ω

φ+ · n+q+ dx

(3.14)

On ∂Ω we have {{φ}} · [[q]] = φ+ · n+q+ and therefore∫
Γ

{{φ}} · [[q]] dx+

∫
Γ\∂Ω

[[φ]]{{q}} dx =
∑
K∈Th

∫
∂K

φ+ · n+q+ dx (3.15)

holds.

We now apply (3.15) twice (once with φ = σ̂ and q = v, once with φ = ∇v and q = û− u)
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to the element-based form (3.9)

B̂(u, v) =

∫
Ω

∇u · ∇v dx−
∑
K∈Th

∫
∂K

σ̂ · nv dx+
∑
K∈Th

∫
∂K

(û− u)n · ∇v dx

=

∫
Ω

∇u · ∇v dx−
∫

Γ

{{σ̂}} · [[v]] dx−
∫

Γ\∂Ω

[[σ̂]][[v]] dx

+

∫
Γ

{{∇v}} · [[û− u]] dx+

∫
Γ\∂Ω

[[∇v]]{{û− u}} dx.

(3.16)

Rearranging terms then gives

B̂(u, v) =

∫
Ω

∇u · ∇v dx+

∫
Γ

([[û− u]] · {{∇v}} − {{σ̂}} · [[v]]) dx

+

∫
Γ\∂Ω

({{û− u}}[[∇v]]− [[σ̂]]{{v}}) dx

=Ĉ(u, v)

(3.17)

and consequently the equivalence of the two formulations.

3.3 Examples of Discontinous Galerkin methods

Up to now we did not specify the flux functions û and σ̂. We consider three different

models here.

1. The symmetric interior penalty method (SIPG)

The fluxes û and σ̂ are chosen according to

û = {{u}} σ̂ = {{∇u}} − δip(u) on Γ \ ∂Ω

û = gD σ̂ = ∇u− δipΓ (u) on ΓD

û = u σ̂ = gNn on ΓN

(3.18)

where the penalty terms are defined by

δip(u) = δ[[u]] on Γ \ ∂Ω

δipΓ (u) = δ(u− gD)n on ΓD.
(3.19)

As it turns out later, a suitable choice for the penalty parameter δ is given by

δ = C p2/h where p is the polynomial degree of the used approximation space and h

the mean value of the adjoining cells’ diameter.

2. The non-symmetric interior penalty method (NIPG)

The fluxes for the NIPG model only differ from the SIPG choices by the definition
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of the boundaries û on Γ \ ∂Ω and ΓD:

û = {{u}}+ n+ · [[u]] σ̂ = {{∇u}} − δip(u) on Γ \ ∂Ω

û = 2u− gD σ̂ = ∇u− δipΓ (u) on ΓD

û = u σ̂ = gNn on ΓN

(3.20)

The penalty terms δip(u) and δipΓ (u) are chosen as before.

3. The method of Baumann-Oden (BO)

The BO method is a special case of the NIPG model in which the penalty parameter

vanishes. In particular, the numerical flux function û is unchanged:

û = {{u}}+ n+ · [[u]] σ̂ = {{∇u}} on Γ \ ∂Ω

û = 2u− gD σ̂ = ∇u on ΓD

û = u σ̂ = gNn on ΓN

(3.21)

These three models can be unified into one equation

B(u, v) =

∫
Ω

∇u · ∇v dx+

∫
ΓI∪ΓD

(θ[[u]] · {{∇v}} − {{∇u}} · [[v]]) dx

+

∫
ΓI∪ΓD

δ[[u]] · [[v]] dx

F (v) =

∫
Ω

f v dx+

∫
ΓD

θgDn · ∇v dx+

∫
ΓD

δgDv dx+

∫
ΓN

gNv dx.

(3.22)

where the parameters corresponding to the considered methods are given by

SIPG: θ = −1 δ > 0
NIPG: θ = 1 δ > 0
Baumann-Oden: θ = 1 δ = 0.

3.4 Uniqueness and approximation results

Now the question arises whether the considered methods yield a unique solution when

applied to the Poisson equation and furthermore what kind of approximation results can

be obtained.

First of all we check whether a solution to the original Poisson problem also solves the

variational formulation proposed by SIPG, NIPG or Baumann-Oden.
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Theorem 3.6 (Consistency). A discontinuous Galerkin discretization of the form (3.12)

is consistent, i.e. a solution u ∈ H2(Ω) to the original Poisson problem (3.1) satisfies

B̂(u, v) = F (v) ∀v ∈ H2(Th), (3.23)

if and only if the numerical fluxes û and σ̂ are consistent (cf. Definition 3.3).

Proof. Let u ∈ H2(Ω) be a solution to the original Poisson problem. Then {{u}} = u and

[[u]] = 0 and we can conclude

B̂(u, v) =

∫
Ω

∇u · ∇v dx+

∫
Γ

[[û− u]] · {{∇v}} − {{σ̂}} · [[v]] dx

+

∫
Γ\∂Ω

{{û− u}}[[∇v]]− [[σ̂]]{{v}} dx

=−
∫

Ω

∆uv dx+
∑
K∈Th

∫
∂K

∇u · nv dx

+

∫
Γ

[[û]] · {{∇v}} − {{σ̂}} · [[v]]) dx+

∫
Γ\∂Ω

({{û}} − u)[[∇v]]− [[σ̂]]{{v}} dx

=

∫
Ω

fv dx+

∫
Γ

{{∇u}} · [[v]] dx+

∫
Γ\∂Ω

[[∇u]]{{v}} dx

+

∫
Γ

[[û]] · {{∇v}} − {{σ̂}} · [[v]]) dx+

∫
Γ\∂Ω

({{û}} − u)[[∇v]]− [[σ̂]]{{v}} dx

=

∫
Ω

fv dx+

∫
Γ

(∇u− {{σ̂}}) · [[v]] + [[û]] · {{∇v}} dx

+

∫
Γ\∂Ω

({{û}} − u)[[∇v]]− [[σ̂]]{{v}} dx.

(3.24)

If the numerical fluxes are consistent {{σ̂}} = ∇u, {{û}} = u, [[σ̂]] = 0 and [[û]] = 0. This

gives

B̂(u, v) =

∫
Ω

fv dx. (3.25)

and the discretization is consistent.

Conversely, if the discretization is consistent, (3.24) implies

{{σ̂}} = ∇u [[σ̂]] = 0

{{û}} = u [[û]] = 0
(3.26)

and thus σ̂(u,∇u) = ∇u and û(u) = u, i.e. the fluxes are consistent.

It can now be easily validated that the numerical fluxes chosen in SIPG, NIPG and
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Baumann-Oden are indeed consistent.

In order to use standard techniques for the existence and uniqueness of a solution, we

need the bilinear form to be continuous and coercive.

Lemma 3.7 (Continuity). Consider the case of SIPG, NIPG or Baumann-Oden. Then

there exists a constant 1 < C ≤ 2 such that

|B(u, v)| ≤ C|‖u‖|δ|‖v‖|δ ∀u, v ∈ H2(Th) (3.27)

where the norm |‖ · ‖|δ is defined by

|‖u‖|2δ = ‖∇u‖2
L2(Ω) +

∫
ΓI∪ΓD

δ−1(n · {{∇u}})2 dx+

∫
ΓI∪ΓD

δ[[v]]2 dx. (3.28)

Proof. cf. [Har08, p. 46f.].

Next we discuss the coercivity of the three proposed methods. For Baumann-Oden we

just get

B(u, u) = ‖∇u‖2
L2(Ω) (3.29)

so this method is not coercive unless we use homogeneous Dirichlet boundary conditions.

The coercivity of the remaining two methods is discussed in the following theorem.

Theorem 3.8 (Coercivity). In the case of NIPG or SIPG there exists a constant C0
IP ≥ 0

such that for all CIP > C0
IP

|B(u, u)| ≥ γ|‖u‖|2δ ∀u ∈ H2(Th) (3.30)

with a constant γ > 0. For the NIPG method CIP = 0 holds.

Proof. cf. [Har08, p. 50f.]

Due to the coercivity, the resulting linear system in a finite element ansatz is non-singular

and there is a unique numerical solution uh ∈ Xh for the SIPG and NIPG method where

Xh is a finite dimensional subspace of the broken Sobolev space H1(Th). In this thesis we

choose Xh = Qk +Q0.

Combining the coercivity and continuity results with interpolation properties of the finite

subspace Xh gives the following convergence result.
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Theorem 3.9. Let u ∈ Hk+1(Ω) be the solution to the Poisson equation (3.1) and let

uh ∈ Uk
h be the solution to the variational formulation given by SIPG or NIPG where

CIP > C0
IP . Furthermore assume that Xh has the approximation property

∀v ∈ L2(Ω)∃vI ∈ Xh : ‖v − vI‖L2(K) ≤ Chk+1
K |v|Hk+1(K) ∀K ∈ Th. (3.31)

Then for NIPG we get the L2-approximation

‖u− uh‖L2(Ω) ≤ Chk|u|Hk+1(Ω) (3.32)

and for SIPG

‖u− uh‖L2(Ω) ≤ Chk+1|u|Hk+1(Ω) (3.33)

holds.

Proof. cf. [Har08, Lemma 5.29, p. 52]

This result and the symmetry of B(·, ·) are the reasons why we prefer the SIPG method

to the NIPG method in this thesis.





4 Navier-Stokes equations

In this section we want to examine the discretized Navier-Stokes equations using the

element pair Qk+1/(Qk + Q0). After a short general introduction we turn over to the

actual discretization of theses equations in Subsection 4.1. Afterwards we have a closer look

onto the solution process where we especially are interested in the choice of preconditioners

and solvers. In particular we use the results of Section 3 for the construction of the

preconditioner. Since we are interested in modelling turbulent flow, we describe the LES

approach and state the used turbulence model by Vreman in Subsection 4.3. As testcase

for this setting we want to consider a three-dimensional channel flow that we describe in

Subsection 4.4. Finally, we present numerical results and compare the resulting statistics

to those obtained with a Taylor-Hood element pair.

The time-dependent, incompressible Navier-Stokes equations

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = f in Ω× (0, T ),

divu = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω

(4.1)

describe the motion of an incompressible fluid in the domain Ω. Compared to the Stokes

equations (2.1) we have here to deal with an additional nonlinearity and a time derivative.

The weak formulation of the incompressible Navier-Stokes equations then reads(
∂u

∂t
,v

)
+ (ν∇u,∇v) + ((u · ∇)u,v)−(divu, p) = (f ,v) ∀v ∈ V , t ∈ (0, T ]

(divu, q) = 0 ∀q ∈ Q, t ∈ (0, T ]

(4.2)

We now formulate an existence and uniqueness result with the choices

V = {v ∈ [H1
0 (Ω)]d : div v = 0}

H = {v ∈ [L2
0(Ω)]d : div v = 0}.

(4.3)

Theorem 4.1. If f ∈ [L2(0, T ;V ′)]d and u0 ∈ H, there exists a weak solution to the

Navier-Stokes equations (4.2) that satisfies

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H). (4.4)
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In the case of space dimension d = 2 this solution is unique and

u ∈ C(0, T ;H),

u′ ∈ L2(0, T ;V ′).
(4.5)

Proof. cf. [Tem95, Theorem 3.1, p. 21].

In three dimensions (d = 3) uniqueness is an open question.

4.1 Time discretization

In order to deal with the time-derivative in the Navier-Stokes equations, we first semi-

discretize the Navier-Stokes equations in time. This means that we only solve the equations

for the discrete time steps 0 = t0 < t1 < · · · < tN = T . We denote the velocity at time

step tn by un and the pressure by pn.

A fully implicit discretization then takes the form

cun + (un · ∇)un − ν∆un +∇pn = f̃
n

in Ω

divun = 0 in Ω.
(4.6)

and the time-derivative transforms into a reaction term. Due to the nonlinearity (un ·∇)un

the stationary system (4.6) is still nonlinear and thus hard to solve. On the other hand a

fully explicit discretization leads to strong restrictions on the time step which are also not

desirable.

A remedy is then to linearize (4.6) by treating the nonlinearity (u · ∇)u semi-explicitly as

(un−1 · ∇)un and all the other terms implicitly. This approach is called IMEX and we use

it here with Runge-Kutta methods. The corresponding Butcher schemes read

c A

bT
=

γ γ 0

1 1− γ γ

1− γ γ

ĉ Â

b̂T
=

0 0 0 0

γ γ 0 0

1 δ 1− δ 0

δ 1− δ 0

(4.7)

where γ = 1−
√

1/2 and δ = 1− 1/(2γ).

This leads to the following Oseen-like problem that we have to solve in each time step

−ν∆un + cun + (b · ∇)un +∇pn = f̃

divun = 0
(4.8)
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where div b = 0. The variational form then reads

ν(∇un,∇v) + (cun,v) + ((b · ∇)un,v)− (div v, p) = f̃ ∀v ∈ V

(divun, q) = 0 ∀q ∈ Q.
(4.9)

According to [RST08, Theorem 1.5, p. 452] this equation is uniquely solvable if the spaces

V and Q satisfy the inf-sup condition, i.e.

inf
q∈Q
q 6=0

sup
v∈V
v 6=0

b(v, q)

‖v‖V ‖q‖Q
≥ β. (4.10)

In the proof the bilinear form ã(·, ·) given by

ã(u,v) = ν(∇un,∇v) + (cun,v) + ((b · ∇)un,v) (4.11)

is considered. Due to the coercivity of ã in V div = {v ∈ V : (div v, q) = 0 ∀q ∈ Q}

ã(u,u) = ν(∇u,∇u) + (cu,u) + ((b · ∇)u,u)

= ν(∇u,∇u) + (cu,u)− ((∇ · b)v,v)

= ν‖∇u‖2 + c‖u‖2 ≥ (Cν + c)‖u‖2,

(4.12)

the same argumentation as for the solvability of the Stokes problem can be used.

Analogously, the discretized problem

ν(∇un,∇v) + c(un,v) + ((b · ∇)un,v) = f̃ ∀v ∈ V h

(divun, q) = 0. ∀q ∈ Qh

(4.13)

is uniquely solvable if the spaces V h and Qh satisfy the discrete inf-sup condition (2.10).

Due to Theorem 2.10, the pair Qk+1/(Qk +Q0) fulfills this requirement and we expect no

difficulties using the considered elements.

4.2 Assembling and solving the linear system

Up to now all considerations were not restricted to a specific choice of finite element pair.

In this subsection, however, we are only interested in the treatment of the Qk+1/(Qk +Q0)

pair that we discussed in Section 2 for the Stokes problem.

In order to obtain a numerical solution for the Navier-Stokes equations in the discussed

approach, we have to assemble the Oseen-like problem (4.9). This results in a linear system
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of the form (
A BT

B 0

)(
u

p

)
=

(
F

0

)
(4.14)

where in A diffusion (ν∆u), advection ((b · ∇)u) and reaction (cu) are taken into account.

B corresponds to the divergence operator (divu) and BT to the gradient operator (∇p).
For solving this saddle point problem, we basically do the same as proposed in [Hei11].

As solver FGMRES is chosen and the used preconditioning matrix is

P =

(
Ã BT

0 S̃

)
(4.15)

where Ã resp. S̃ is a approximation to A resp. the Schur complement S = −BA−1BT .

This leads to the following iteration matrix

(
A BT

B 0

)
P−1 =

(
A BT

B 0

)(
Ã−1 −Ã−1BT S̃−1

0 S̃−1

)

=

(
AÃ−1 (I − AÃ−1)BT S̃−1

BÃ−1 SS̃−1

)
.

(4.16)

If the approximations are exact, the iteration matrix simplifies to(
I 0

BA−1 I

)
. (4.17)

This matrix has just eigenvalues equal to one and Krylov subspace method converges in

two steps. Therefore, we expect a fast convergence if the approximations are chosen well

enough.

Since A is a matrix corresponding to the velocity, we do not have to change this part of the

implementation compared to Q2/Q1 elements. In that case it turned out that even a quite

coarse approximation yields good approximations. Therefore, we choose BiCGStab with a

rather large relative tolerance of 10−2 as solver and BlockJacobi(ILU) as preconditioner.

The more interesting part now is S−1. Due to the turbulence models we have to choose a

rather small time step size. This means that our problem is reaction dominant and we can

approximate the inverse of the Schur complement S−1 by

S−1 = (−BA−1BT )−1 ≈ (− div c−1I∇)−1 ≈ −c∆−1. (4.18)



4 NAVIER-STOKES EQUATIONS 43

Therefore, it is appropriate to solve a Poisson problem in order to approximate the inverse

of S. In the Navier-Stokes problem no boundary conditions for the pressure appear. So

we have to use homogeneous Neumann boundary conditions to be consistent.

A naive ansatz using just a CG method without any regularization leads to some difficulties:

If we take a solution and simply change it on one element by a constant, the result is still

a solution. That means that the resulting linear system has as many zero eigenvalues as

there are cells in the discretization of Ω. A first idea to circumvent this problem might

be to set all discontinuous degrees of freedom to zero. Then we would have to solve a

Poisson problem with continuous elements. Unfortunately, this approach leads to the

same solutions as with the Taylor-Hood pair Q2/Q1 because we also have to apply these

constraints on the pressure in order to be consistent.

The remedy here is to use the Symmetric Interior Penalty Galerkin (SIPG) that we

introduced and discussed in Section 3. There we considered the Poisson problem with

partly Neumann and partly Dirichlet boundary conditions. In our case where only Neumann

boundary conditions are present the formulation (3.22) reduces to

B(u, v) =

∫
Ω

∇u · ∇v dx+

∫
ΓI

δ[[u]] · [[v]]− {{∇u}} · [[v]]− [[u]] · {{∇v}} dx (4.19)

F (v) =

∫
Ω

f v dx. (4.20)

Since the formulation is symmetric, we can choose here a CG solver with a rather small

relative tolerance (10−5) compared to the inversion of A. The choice of a suitable parallel

preconditioner is quite a hard task here. We tried all of PETSc’s [BBB+12] preconditioners

that were available in the deal.II version 7.2.0. In addition to the well-known algorithms

we also used two preconditioners from the HYPRE suite [FJY06], namely BoomerAMG

[HMY02] and ParaSails [Cho00]. BoomerAMG is a algebraic multi-grid preconditioner that

showed very good performance for the Taylor-Hood pair in our program. ParaSails uses

least-squares minimization to compute a sparse approximation inverse. Both algorithms

are especially constructed for parallel usage.

In Table 4.1 we see different approaches on a 6× 6× 6 and a 12× 12× 12 mesh using one

process. Nearly all of the preconditioners fail here because they do not show an improved

performance compared to the identity. Just ParaSails seems to improve the calculation

time. This is the reason why we choose it in our implementation. The number of FGMRES

iterations is independent of the used preconditioner 35 for a 6× 6× 6 mesh and 40 for a

12× 12× 12 triangulation. In the case of a Q2/Q1 pair the preconditioner BoomerAMG

showed extraordinary performance. On the 6 × 6 × 6 mesh about 6 iteration steps are

needed that take 0.01s. On the 12× 12× 12 each of the 7 iteration steps needs about 8s.



44 4 NAVIER-STOKES EQUATIONS

Table 4.1: Average time and number of iterations for solving the Poisson problem

Preconditioner
no periodicity periodicity

6× 6× 6 12× 12× 12 6× 6× 6 12× 12× 12
iters. time iters. time iters. time iters. time

Identity 290 0.22 s 700 7.0 s 170 0.08 s 490 2.4 s
BoomerAMG [HMY02] 220 1.30 s 950 95.0 s 90 0.30 s 340 19.0 s
Jacobi 240 0.17 s 640 6.3 s 150 0.07 s 470 2.3 s
BlockJacobi(ILU) 30 0.05 s 330 6.5 s 80 0.07 s 200 2.1 s
BlockJacobi(ICC) 240 0.17 s 630 6.4 s 100 0.08 s 130 1.8 s
ParaSails [Cho00] 80 0.10 s 250 3.8 s 50 0.04 s 260 1.6 s

To solve for one time-step, 10 FGMRES iterations are required.

4.3 LES and the turbulence model

When the viscosity ν is getting smaller and smaller, typically the flow is becoming more

and more turbulent. This means that there is a high sensitivity to small changes and

additionally that there are very small structures (eddies) in the flow. Although these

structures are quite small they have an important impact because this is where diffusion

happens. So a very fine mesh has to be used in order to get a meaningful numerical solution

due to the nonlinear term. Such an approach is called Direct Numerical Simulation (DNS).

However, it is often not feasible to resolve all scales.

A remedy is to model the influence of the small scales and to compute the numerical

solution on a coarse grid on which only large scales can be resolved. Such an approach,

in which only big structures (large eddies) of he flow can be determined, is called Large

Eddy Simulation (LES).

In order to solve only for the big scales, we have to change our equations a bit and separate

the velocity

u = u+ u′ (4.21)

into the resolved scales u and the non-resolved scales u′. The filter · is in general given by

φ(x, t) =

∫ ∞
−∞

∫ ∞
−∞

φ(r, t′)G(x− r, t− t′) dt′ dr (4.22)

where G is a convolution. A homogeneous filter furthermore satisfies the following

properties:
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1. Conservation of constants ∫ ∞
−∞

∫ ∞
−∞

G(r, t′) dt′ dr = 1

2. Linearity

φ+ ψ = φ+ ψ

3. Commutation with derivatives

∂φ

∂xi
=
∂φ

∂xi
i = 1, . . . , d ,

∂φ

∂t
=
∂φ

∂t

The next step is to actually filter the Navier-Stokes equations. As we mentioned before,

the small scales have an influence onto the large ones and therefore we expect u′ to have

some contribution when filtering the equations. The filtered Navier-Stokes equations then

read

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = f − div τ in Ω× (0, T ),

divu = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω.

(4.23)

where the residual stress tensor τ is given by

τij = ui · uj − ui · uj. (4.24)

This means that the influence of the small scales comes in by the nonlinearity. In order to

get a closed problem, in which only u and p appear, we have to specify an approximation

to τ . The most common choice is the eddy viscosity hypothesis that is given by

τ (u) ≈ −2νeS(u) (4.25)

with the symmetric strain rate tensor S(u) = 1
2
(∇u + (∇u)T ). We know note that

∆u = 2 divS(u) (see Lemma 2.14) and the filtered Navier-Stokes equations can be
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rewritten as

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = f − div(2(ν + νe)S(u)) in Ω× (0, T ),

divu = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω.

(4.26)

So the closure model introduces additional viscosity νe depending on the turbulence model.

The model we consider in this thesis was introduced by Roel Verstappen in [Ver11] and

analyzed by Helene Dallmann in [Dal12]. It is given by

νe(v) ∼ |r(v)|
q(v)

. (4.27)

where r and q are two two invariants of the strain rate tensor

r(v) := −1

3
tr
(
S3(v)

)
q(v) :=

1

2
tr
(
S2(v)

)
.

4.4 Channel flow

The test case we want to consider is a flow between two parallel plates that are infinitely

extended in x- and z-direction. On these plates homogeneous Dirichlet boundary condi-

tions are imposed and the main flow direction is parallel to the x-axis. An example of

Figure 4.1: Turbulent channel flow

such an turbulent channel flow can be seen in Figure 4.1.
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Since infinitely extended plates do not fit into the assumption of a bounded domain,

we have to model them. We do this here by using periodic boundary conditions in y-

and z-direction. In order to avoid influences by these boundaries, the lengths of the

computational domain Ω = [0, L] × [−H,H] × [0, B] in the periodic directions have to

be large enough. According to [BIL06] the choices L = 4π, H = 1 and B = 4
3
π are

appropriate for the Reynolds number Re = 5600 (Reτ = 180).

For the remainder of the problem’s specification we need some quantities that are charac-

teristic to the channel flow:

wall shear stress τW = ν ∂〈u〉
∂y

∣∣∣
y=0

friction velocity uτ =
√
τW

viscous length y+ = uτy
ν

friction Reynolds number Reτ = uτ
ν

.

Since we want to be able to capture dynamics of the flow near the walls, we choose a grid

that is isotropic in x- and z-direction and is stretched in y-direction due to

f : [0, 1]→ [−1, 1] : f(y) =
tanh(4y − 2)

tanh(2)
. (4.28)

This choice is recommended in [Zha07]. For the other parameters we refer to [Rö11] and

just state them here.

• Right-hand side:

f(tn+1) :=

τW/H0

0

+
1

∆t

Ubulk − U
num
bulk (tn)

0

0

 (4.29)

where Unum
bulk is the numerically computed bulk velocity.

• Initial value:

u0 =

UR(y) + 0.1UbulkΨrand

0.1UbulkΨrand

0.1UbulkΨrand

 (4.30)

where Ubulk is given by

Ubulk =
1

H

∫ H

0

UR(y) dy (4.31)
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and UR(y) := U+
R (y+)uτ with

U+
R (y+) :=

1

0.41
ln(1 + 0.4y+) + 7.8

(
1− exp

(
−y

+

11

)
− y+

11
exp

(
−y

+

3

))
. (4.32)

Ψrand ∈ [0, 1] is a random number that perturbs the initial solution UR in order to

boost turbulence.

• Time step size: ∆t = 0.86

4.5 Numerical results

In this section we observe the performance of the Q2/(Q1 +Q0) pair for the channel flow

problem described above. We first have a look onto a laminar example where we can

compare the numerical results with an analytical solution. Afterwards we concentrate on

the more interesting case of a turbulent flow.

4.5.1 Laminar flow

For validating the implementation we consider here a laminar flow. In this case we expect

a stationary flow in x-direction. Inserting the ansatz u = (u1(y), 0, 0)T in the (stationary)

Navier-Stokes equations, then gives

∂p

∂y
=
∂p

∂z
= 0 (4.33)

−ν∆u1 +
∂p

∂x
= 0. (4.34)

So ν∆u1 = ∂p
∂x

= C and the velocity is quadratic u =
(
− 1
ν
∂p
∂x
y(1− y), 0, 0

)T
.

In order to keep the flow laminar, we simply choose a quite low frictional Reynolds number

Reτ = 10. The result that we get then after a few thousand time steps can be observed in

Figure 4.2 and 4.3.
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Figure 4.2: Numerical solution for the laminar channel flow
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Figure 4.3: Error |u1 − uh| for the laminar channel flow

The numerical result shows very good agreement with the analytical reference. So in the

linear case we get exactly the expected behavior.
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4.5.2 Turbulent flow

The only change we perform to make the flow turbulent is to change the frictional Reynolds

number to the value we discussed before Reτ = 180. We compare our data with a Direct

Numerical Simulation performed by Moser et al. in [MKM99] and with the results that

were obtained with a Taylor-Hood Q2/Q1 pair.

The quantities that we are interested in are

• the mean velocities normalized with the friction velocity

〈u〉+ = 〈u〉/uτ , 〈v〉+ = 〈v〉/uτ , 〈w〉+ = 〈w〉/uτ ,

• the normalized Reynolds stresses 〈u′u′〉+, 〈u′v′〉+, 〈v′v′〉+, 〈w′w′〉+,

• the normalized turbulent kinetic energy k+ = 1
2

(〈u′u′〉+ + 〈v′v′〉+ + 〈w′w′〉+),

• the root mean square velocity u+
rms = 〈u′u′〉+ − 2

3
k+

where we denote the velocity components according to u = (u, v, w)T .

Additionally to the already mentioned 16× 24× 16 mesh, we consider a mesh with the

resolution 16× 24× 24 since we guess that this lead to significantly better results. Finally,

we examine the behavior when we use Neumann boundary conditions everywhere instead

of periodicity for the pressure.

The results on the 16× 24× 16 mesh were obtained by averaging over 1500 time steps

after a build-up time of 2000 time steps. On the 16× 24× 16 mesh 600 developing time

steps were used and the results were averaged over 750 time steps. In particular one has

to be careful when comparing the results on these two meshes.

First order statistics

Concerning the first order statistics we are especially interested in the results in the main

flow direction. Figure 4.5a and 4.5b clearly show that choosing Q2/(Q1 +Q0) instead of

the Taylor-Hood pair improves this quantity. The main difference to the reference solution

remains in the interval y+ ∈ [10, 20]. Interestingly the solution on the finer mesh shows

exactly in this area better results than the solution on the coarser mesh.

In the wall normal direction we expect the velocity to be zero in average. This is confirmed

by the results shown in Figure 4.6a and 4.6b. Near the wall both element pairs show a

vanishing velocity v. However, when moving to the middle of the channel the approximation

with the Taylor-Hood elements get worse. The new element does not suffer this problem.

Although the velocity in z-direction should also be zero, both elements pairs exhibit more

difficulties than in the previous case. Figure 4.7a shows that in the case of a discontinuous
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Figure 4.4: Mean velocity 〈u〉
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pressure w stays close to zero up to y+ = 20. Such a limit cannot be given for the

Taylor-Hood element. In both cases the velocity retreats from zero quite fast as can be

seen in 4.7b. Previous computations have however shown that this behavior advances with

more averaging steps. Choosing a better resolution in z-direction does not improve the

results significantly.

A short summary for the first order statistics is that the using the new element in all cases

lead to better results. Refining the mesh in z-direction did not improve the results much.

Second order statistics

Next we consider the second order statistics starting with 〈u′u′〉+ in Figure 4.8a and 4.8b.

The Taylor-Hood solution is in both refinement cases quite different from the reference

solution as the profile is rather flat for y+ ∈ [20, 180]. However, the Q2/(Q1 +Q0) pair

behaves strangely as well on the 16× 24× 16 mesh. Up to y+ ≈ 30 at least the qualitative

behavior is good. But further inside the flow the variance increases strongly instead of

decreasing. On the refined mesh we observe a much better behavior. The profile has a

clear maximum that almost agrees with the reference solution and also the decrease up to

y+ ≈ 50 is in good agreement with the Direct Numerical Simulation. For higher values of

y+ however the variance is again increasing instead of declining.

The statistics for the variance of the v-component of the velocity (Figure 4.9a and 4.9b)

are rather difficult to interpret. Both element pair give quite different results compared to

the reference. Refining in z-direction does not improve this behavior.

Nearly the same holds true for the variance of the w-component of the velocity. Figure

4.10a and 4.10b show that the profiles are not similar to the reference when using a

discontinuous pressure space. On the contrary, the Taylor-Hood pair shows a qualitative

good result although the peak is at y+ ≈ 80 instead of y+ ≈ 30.

The profile for the covariance between u- and v-component in Figure 4.11a is reasonable

for the Taylor-Hood pair. Figure 4.11b shows that the refinement in z-direction leads to a

very good agreement with the reference data for the this pair. In contrary, there is almost

no similarity between the Q2/(Q1 +Q0) solution and the reference. Refining the mesh in

z-direction at least seems to improve the capture of the peak.

The root mean square velocity u+
rms (Figure 4.12a and 4.12b) and the turbulent kinetic

energy k+ (Figure 4.13a and 4.13b) are linear combinations of the variances 〈u′u′〉+,

〈v′v′〉+ and 〈w′w′〉+. Since both 〈v′v′〉+ and 〈w′w′〉+ are much smaller than 〈u′u′〉+ we

can basically refer to the variance of the first velocity component for a discussion.

Summarizing these results, a significant improvement is achieved when refining the mesh

in z-direction for the case of Q2/(Q1 +Q0) elements. There is no explanation so far what

causes the problems in the middle of the channel (y+ > 50).
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Figure 4.13: Turbulent kinetic energy k+
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Comparison between Neumann and partly periodic boundary conditions

Finally, we compare the impact of the boundary conditions on the solutions. The original

implementation in [Hei11] uses for velocity and pressure the same periodicity constraints.

This led to a significant improvement in terms of computation time. We observed the

same effect for our Q2/(Q1 +Q0) pair in Tale 4.1. However, since there are no boundary

conditions for the pressure in the Navier-Stokes equations, the question arises whether

this choice is appropriate. Therefore, we consider a 16× 24× 24 mesh and compute the

numerical solution using Neumann boundary conditions for the pressure everywhere.
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Figure 4.14: 〈u〉+

Figure 4.14 shows that the mean velocity profile 〈u〉 even gets worse when changing from

periodic to Neumann boundary conditions except for the interval y+ ∈ [10, 20] where

the solution is in good agreement with the Moser data. In this interval all the previous

considered cases showed worst behavior.

According to Figure 4.15 the results in the y-direction remain the same. This might not

be surprising since the boundary conditions in that direction were not changed.

Concerning the last component of the velocity Figure 4.16 shows that the numerical

solution stays longer close to zero when Neumann boundary condition are used. However,

for y+ ≥ 30 in both cases there is a non-vanishing velocity component in z-direction.

For the statistics of second of order we first examine the variance 〈u′u′〉+. In Figure 4.17 we

observe that compared to the periodic boundary conditions the Neumann conditions yield

a peak that is to high compared to the reference data. However, the behavior towards the
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middle of the flow improved. Although the variance is still increasing instead of declining,

the quotient between the peak value and the value in the middle of the value is much

better.
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Figure 4.17: 〈u′u′〉+
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Next we compare the covariances 〈u′v′〉+ in Figure 4.18. We already saw a significant

improvement when refining the mesh in z-direction. This trend is continued when we

switch form the periodicity constraints to the Neumann boundaries. The negative peak is

met much better and also the quantitative trend towards the middle of the flow is right.

In particular there is no decline towards the middle of the channel.

Unfortunately the results for the variance in y-direction 〈v′v′〉 and in z-direction does not

improve. Both the profile in Figure 4.19 and Figure 4.20 differ much from the reference

values.
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Figure 4.19: 〈v′v′〉+

Concerning the turbulent kinetic energy k+ we observe that for the Neumann conditions

the peak is too high and too low for the periodicity constraints. The declining behavior

towards the middle of the flow seems again to be better for the Neumann boundary

conditions.

In summary there are no clear indications against using the same boundary conditions

as for the velocity. Some quantities are significantly better using Neumann boundary

conditions (〈u′v′〉+ and 〈w〉+) and some other show improved behavior with periodicity

constraints (〈u′u′〉+ and 〈u〉+).

4.5.3 Computational costs

Similarly to the case of Stokes flow, we want to compare the computational effort that has

to be spend when using the Q2/Q1 and the Q2/(Q1 +Q0) element.
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Figure 4.20: 〈w′w′〉+
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Figure 4.21: k+
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Again, the Q2-approximation for the velocity is the same and there are (2n1 + 1)(2n2 +

1)(2n3 + 1) dofs for each component assuming the mesh has a n1 × n2 × n3 resolution.

For the pressure we get (n1 + 1)(n2 + 1)(n3 + 1) resp. (n1 + 1)(n2 + 1)(n3 + 1) + n1n2n3

dofs. In particular the number of pressure nodes is in both cases much smaller then the

number of velocity dofs. Compared to the implementation with the continuous pair the

SIPG terms have to be assembled. According to our considerations this effort is clearly

negligible in comparison to the remaining assembling time.

However, there is a huge difference in the duration of the solving process. This is mainly

due to the fact that we did not find a preconditioner for the Q2/(Q1 + Q0) element

that leads to performance as impressive as the BoomerAMG algorithm for the Q2/Q1

Taylor-Hood pair. In particular this means that the current implementation is not as

efficient as before.

Nevertheless, the numerical results, i.e. the statistics, show that the use of a the new

element is worth the effort.





5 Summary

In this thesis we considered the finite element pair Qk+1/(Qk+1 +Q0) that is generated

from the Taylor-Hood pair by adding elementwise constant functions to the pressure space.

In particular we analyzed the behavior when applied to incompressible flow, namely the

Stokes and Navier-Stokes equations.

Section 2 was devoted to the Stokes problem. We first of all proved that the considered

finite element pair satisfies a discrete inf-sup condition for arbitrary regular quadrilateral

and hexahedral meshes. From this result we got optimal convergence results by standard

analysis. Afterwards we confirmed these observation with numerical results. Therefore, we

chose a discontinuous reference solution and saw that no Gibbs phenomenon occurred in

contrary to the observations with the Taylor-Hood pair. The optimality of the orders of

convergence was then validated for k ∈ {1, 2} and space dimension d = 2.

In the third section we constructed suitable methods for solving a Poisson equation using

the element pair. Approximation results were given and the unique solvability of the

proposed methods was proven. These kind of problems often occur when incompressible

flow problems are discretized. As example may serve the projection step in a decoupled

Navier-Stokes solver or the construction of a preconditioner for our implementation.

Finally, in the fourth chapter the full incompressible Navier-Stokes equations where

considered. After some remarks to the implementation details a suitable preconditioner

was constructed. For that in particular the results from the previous section were crucial.

Then the proposed implementation was applied on the testcase of a turbulent channel

flow. The results clearly showed that the element pair improves all the first order statistics

compared to the Taylor-Hood element. For the second order statistics the observations

are not that clear as there seems to be a strange behavior in the middle of the flow.

Nevertheless these results could significantly be improved by refining the mesh in spanwise

direction. There does not seem to be any serious indications against using partly periodic

boundary conditions for the pressure.

A remaining problem clearly is the choice of a better preconditioner for the SIPG method

that accelerates the CG solver sufficiently. In particular the rather slow solver prevents

considering finer mesh resolutions. An additional approach to the already considered

might be the use of geometric multi-grid methods. However, in the used library deal.II

a parallel version is not yet available. The implementation is nontrivial since already

partitioning the mesh over different processes is a difficult problem and an external package

is used for this task.

Another problem that occurred in this thesis are the strange results in the second order

statistics. The only cure so far seems to be to refine the mesh.
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