Schwarz Smoothers for Conforming Stabilized Discretizations of the Stokes Equations

Daniel Arndt¹, Ryan Grove², Guido Kanschat¹

¹Heidelberg University ²Clemson University

15th European Finite Element Fair

Department of Mathematics of the University of Milano

26.-27. May 2017

Introduction	Multigrid	Analysis I	Analysis II	Numerical Results	Summary
The Oseer	n problem				

Oseen

Consider the Oseen problem

$$(\boldsymbol{f}, \boldsymbol{v}) = \nu(\nabla \boldsymbol{u}, \nabla \boldsymbol{v}) + \frac{\kappa}{2} ((\boldsymbol{w} \cdot \nabla \boldsymbol{u}, \boldsymbol{v}) - (\boldsymbol{w} \cdot \nabla \boldsymbol{v}, \boldsymbol{u})) \\ - (\boldsymbol{p}, \nabla \cdot \boldsymbol{v}) + (\nabla \cdot \boldsymbol{u}, \boldsymbol{q}) + \gamma(\nabla \cdot \boldsymbol{u}, \nabla \cdot \boldsymbol{v}) \\ \nabla \cdot \boldsymbol{w} = 0 \\ \nabla \cdot \boldsymbol{u} = 0$$

with the grad-div stabilization term $\gamma(\nabla \cdot \boldsymbol{u}, \nabla \cdot \boldsymbol{v})$.

This leads to the following structure of the system matrix:

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f} \\ 0 \end{pmatrix}$$

Hence, we have to solve a symmetric (in case $\kappa = 0$), but indefinite problem.

Introduction	Multigrid	Analysis I	Analysis II	Numerical Results	Summary
Multigrid -	V-Cycle)			

Pre-smoothing:

$$u^{(k+1)} = u^{(k)} - \mathcal{R}_l^{-1} (\mathcal{A}_l u^{(k)} - f_l), \qquad 0 \le k < m_{
m pre}$$

② Coarse grid correction:

$$\begin{split} f_{l-1} &= \Pi_{l-1}^{T} (f_{l} - \mathcal{A}_{l} u^{(m_{pre})}) \\ v^{(k+1)} &= M G_{l-1} (v^{(k)}, f_{l-1}), \\ w^{(0)} &= u^{(m_{pre})} + v^{(m_{coarse})} \end{split} \qquad 0 \leq k < m_{coarse} \end{split}$$

Ost-smoothing:

$$w^{(k+1)} = w^{(k)} - \mathcal{R}_l^{-1} (\mathcal{A}_l w^{(k)} - f_l), \qquad 0 \le k < m_{postl}$$

4 Assign:
$$MG(u^{(0)}, f_l) = w^{(m_{post})}$$

Coarse grid solver $MG_0(u(0), f) = \mathcal{A}_0^{-1} f_0$

Introduction	Multigrid	Analysis I	Analysis II	Numerical Results	Summary
Multigrid -	V-Cycle)			

Pre-smoothing:

$$u^{(k+1)} = u^{(k)} - \mathcal{R}_l^{-1} (\mathcal{A}_l u^{(k)} - f_l), \qquad 0 \le k < m_{pre}$$

② Coarse grid correction:

$$\begin{split} f_{l-1} &= \Pi_{l-1}^{T} (f_{l} - \mathcal{A}_{l} u^{(m_{pre})}) \\ v^{(k+1)} &= M G_{l-1} (v^{(k)}, f_{l-1}), \\ w^{(0)} &= u^{(m_{pre})} + v^{(m_{coarse})} \end{split} \qquad 0 \leq k < m_{coarse} \end{split}$$

Ost-smoothing:

$$w^{(k+1)} = w^{(k)} - \mathcal{R}_l^{-1} (\mathcal{A}_l w^{(k)} - f_l), \qquad 0 \le k < m_{postl}$$

4 Assign:
$$MG(u^{(0)}, f_l) = w^{(m_{post})}$$

Coarse grid solver $MG_0(u(0), f) = \mathcal{A}_0^{-1} f_0$

Hermann Amandus Schwarz

- Take the local structure of the problem into account
- Use local problems for preconditioning

$$\mathcal{R}_I = \sum_{K \in \mathcal{T}_I} \mathcal{P}_K \mathcal{A}_K^{-1}$$

Vertex patches

Introduction	Multigrid	Analysis I	Analysis II	Numerical Results	Summary
Raviart-	Thomas E	lements			

Original result from Kanschat and Mao¹ using Raviart-Thomas elements.

Key assumption

$$abla \cdot \textit{V}_h = \textit{Q}_h \qquad \qquad \textit{V}_{h,0}^{\textit{div}} \subset \ldots \subset \textit{V}_{h,L}^{\textit{div}}$$

where

$$V_{h,l}^{\textit{div}} := \{ v_h \in V_l : (
abla \cdot u_h, q_h) = 0 \quad orall q_h \in Q_h \}$$

Can this assumption be weakened and the result be applied to other inf-sup stable elements?

¹Guido Kanschat and Youli Mao. "Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for the Stokes equations". In: *Journal of Numerical Mathematics* 23.1 (2015), pp. 51–66

26.-27. May 2017

Introduction	Multigrid	Analysis I	Analysis II	Numerical Results	Summary
Raviart-Th	nomas F	lements			

Theorem²

The multilevel iteration $I - B_L A_L$ for the Stokes problem

- with the variable V-cycle operator \mathcal{B}_L
- employing the smoother \mathcal{R}_l with suitably small scaling factor η

is a contraction with contraction number independent of the level L.

²Guido Kanschat and Youli Mao. "Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for the Stokes equations". In: *Journal of Numerical Mathematics* 23.1 (2015), pp. 51–66

Denote the bilinear form a_l corresponding to the weak Laplace operator by

$$a_l(\boldsymbol{u},\boldsymbol{v}) := \nu(\nabla \boldsymbol{u},\nabla \boldsymbol{v})$$

For $u_l \in V_l$ define $u_l^0 \in V_h^{div}$ as projection of u_l onto V_h^{div} with respect to a_l , i.e.

$$a_l(\boldsymbol{u}_l^0, \boldsymbol{v}_l) = a_l(\boldsymbol{u}_l, \boldsymbol{v}_l) \quad \forall \boldsymbol{v}_l \in \boldsymbol{V}_h^{div} l.$$

Then define $\boldsymbol{u}_{l}^{\perp}$ by $\boldsymbol{u}_{l}^{\perp} := \boldsymbol{u}_{l} - \boldsymbol{u}_{l}^{0}$.

Lemma

$$rac{lpha}{d^2} \|
abla \cdot oldsymbol{u}_l^\perp \|_0^2 \leq a_l(oldsymbol{u}_l^\perp,oldsymbol{u}_l^\perp) \leq rac{
u}{\gamma_l^2} \| \pi_{Q_h}(
abla \cdot oldsymbol{u}_l^\perp) \|_0^2$$

Idea: Eliminate the pressure by considering a perturbed formulation

$$\begin{aligned} \alpha(\boldsymbol{u}_l,\boldsymbol{v}_h) + \nu(\nabla \boldsymbol{u}_l,\nabla \boldsymbol{v}_h) + \gamma(\nabla \cdot \boldsymbol{u}_h - \epsilon \boldsymbol{\rho}_h,\nabla \cdot \boldsymbol{v}_h - \epsilon \boldsymbol{q}_h) \\ -(\boldsymbol{\rho}_l,\nabla \cdot \boldsymbol{v}_h) + (\nabla \cdot \boldsymbol{u}_l,\boldsymbol{q}_h) - \epsilon(\boldsymbol{\rho}_l,\boldsymbol{q}_h) = (\boldsymbol{f},\boldsymbol{v}_h) \end{aligned}$$

Defining the operator $\mathcal{A}_l: \textit{V}_l \times \textit{Q}_l \rightarrow (\textit{V}_l \times \textit{Q}_l)^*$ by

$$\begin{split} \mathcal{A}_l((\boldsymbol{u}_l,\boldsymbol{p}_l),(\boldsymbol{v}_h,q_h)) &:= & \alpha(\boldsymbol{u}_l,\boldsymbol{v}_h) + \nu(\nabla \boldsymbol{u}_l,\nabla \boldsymbol{v}_h) \\ &+ \gamma(\nabla \cdot \boldsymbol{u}_l - \epsilon \boldsymbol{p}_l,\nabla \cdot \boldsymbol{v}_h - \epsilon q_h) \\ &+ (\boldsymbol{p}_l,\nabla \cdot \boldsymbol{v}_h) + (\nabla \cdot \boldsymbol{u}_l,q_h) - \epsilon(\boldsymbol{p}_l,q_h). \end{split}$$

this problem can be written as $\mathcal{A}_{l}((\boldsymbol{u}_{l}, p_{l}), (\boldsymbol{v}_{h}, q_{h})) = (\boldsymbol{f}, \boldsymbol{v}_{h})$ for all $(\boldsymbol{v}_{h}, q_{h}) \in \boldsymbol{V}_{l} \times Q_{l}$.

Introduction Multigrid Analysis I Analysis II Numerical Results Summary
Stokes, Perturbed Primal and Perturbed Dual Problem

For $\epsilon > 0$, the Stokes problem can be rewritten as

$$\mathcal{A}_{l}(\boldsymbol{u}_{l},\boldsymbol{v}_{h}) := \alpha(\boldsymbol{u}_{l},\boldsymbol{v}_{h}) + \nu(\nabla \boldsymbol{u}_{l},\nabla \boldsymbol{v}_{h}) \\ + \gamma(\pi_{Q_{h}}^{\perp}(\nabla \cdot \boldsymbol{u}_{l}),\pi_{Q_{h}}^{\perp}(\nabla \cdot \boldsymbol{v}_{h})) \\ + \frac{1}{\epsilon}(\pi_{Q_{h}}(\nabla \cdot \boldsymbol{u}_{l}),\pi_{Q_{h}}(\nabla \cdot \boldsymbol{v}_{h})). \\ \mathcal{A}_{l}(\boldsymbol{u}_{l},\boldsymbol{v}_{h}) = (\boldsymbol{f},\boldsymbol{v}_{h})$$

for all $\boldsymbol{v}_h \in \boldsymbol{V}_l$.

Lemma

Let (\mathbf{u}_l, p_l) be the solution to the perturbed problem in two variables and \mathbf{u}_l the solution to the perturbed problem in one variable. Then it holds

$$oldsymbol{u}_l = oldsymbol{u}_l$$
 $\epsilon oldsymbol{p}_l = \pi_{oldsymbol{Q}_h}(
abla \cdot oldsymbol{u}_l) = \pi_{oldsymbol{Q}_h}(
abla \cdot oldsymbol{u}_l)$

Let (\boldsymbol{u}, p) be the solution to the continuous Stokes problem and (\boldsymbol{u}_h, p_h) the solution to the discretized (perturbed) problem.

Lemma It holds $\alpha \| \boldsymbol{u} - \boldsymbol{u}_h \|_0^2 + \nu \| \nabla (\boldsymbol{u} - \boldsymbol{u}_h) \|_0^2 + \gamma \| \nabla \cdot (\boldsymbol{u} - \boldsymbol{u}_h) \|_0^2 + \| \boldsymbol{p} - \boldsymbol{p}_h \|_0^2$ $\lesssim \epsilon + h^{2k_p + 2} + h^{2k_u}.$

Introduction	Multigrid	Analysis I	Analysis II	Numerical Results	Summary
Convera	ence Res	ult			

Assumptions

If \mathcal{R}_l satisfies for all $\textbf{\textit{w}} \in \textbf{\textit{V}}_l$

$$\mathcal{A}_{l}((\mathcal{I}_{l}-\mathcal{R}_{l}\mathcal{A}_{l})\boldsymbol{w},\boldsymbol{w})\geq0$$
(1)

$$(\mathcal{R}_{l}^{-1}[\mathcal{I}_{l}-\mathcal{P}_{l-1}]\boldsymbol{w},[\mathcal{I}_{l}-\mathcal{P}_{l-1})\boldsymbol{w}) \leq \beta_{l}\mathcal{A}_{l}([\mathcal{I}_{l}-\mathcal{P}_{l-1}]\boldsymbol{w},[\mathcal{I}_{l}-\mathcal{P}_{l-1}]\boldsymbol{w})$$
(2)

where $\beta_l = \mathcal{O}(\gamma_l^{-1})$, then it holds

$$0 \leq \mathcal{A}_l([\mathcal{I}_l - \mathcal{B}_l \mathcal{A}_l) \boldsymbol{w}, \boldsymbol{w}) \leq \delta \mathcal{A}_l(\boldsymbol{w}, \boldsymbol{w}), \quad \forall \boldsymbol{w} \in \boldsymbol{V}_l$$

where $\delta < 1$.

Lemma

Let $\eta \leq 2^{-\dim}$, then

$$\mathcal{A}_l((\mathcal{I}_l - \mathcal{R}_l \mathcal{A}_l) oldsymbol{w}, oldsymbol{w}) \geq 0, \hspace{1em} orall oldsymbol{w} \in oldsymbol{V}_l.$$

Introduction	Multigrid	Analysis I	Analysis II	Numerical Results	Summary
Stable d	ecomnosi	tion			

Lemma

For all $\boldsymbol{w} \in \boldsymbol{V}_l$ it holds

$$(\mathcal{R}_l^{-1}[\mathcal{I}_l - \mathcal{P}_{l-1}] \boldsymbol{w}, [l - \mathcal{P}_{l-1}) \boldsymbol{w}) \leq \beta_l \mathcal{A}_l([\mathcal{I}_l - \mathcal{P}_{l-1}] \boldsymbol{w}, [\mathcal{I}_l - \mathcal{P}_{l-1}] \boldsymbol{w})$$

Essentially, we only need to find a decomposition $(u_v)_v$ of $[\mathcal{I}_l - \mathcal{P}_{l-1}]w$, i.e.

$$\boldsymbol{u} := [\mathcal{I}_l - \mathcal{P}_{l-1}] \boldsymbol{w} = \sum_{v} \mathcal{I}_{l,v} \boldsymbol{u}_{v}.$$

such that

$$\sum_{\mathbf{v}} (\mathcal{A}_{l} \mathcal{I}_{l,\mathbf{v}} \mathbf{u}_{\mathbf{v}}, \mathcal{I}_{l,\mathbf{v}} \mathbf{u}_{\mathbf{v}}) \leq \beta_{l} \mathcal{A}_{l} ([\mathcal{I}_{l} - \mathcal{P}_{l-1}] \mathbf{w}, [\mathcal{I}_{l} - \mathcal{P}_{l-1}] \mathbf{w}).$$

Introduction	Multigrid	Analysis I	Analysis II	Numerical Results	Summary
Stable de	ecomposi	tion			

Theorem

For any $\mathbf{v}_l \in \mathbf{V}_l$ there exists a decomposition $\mathbf{v}_{l,j}$ such that

$$\sum_{j=0}^{J} \mathcal{A}_l(oldsymbol{v}_{l,j},oldsymbol{v}_{l,j}) \lesssim \mathcal{A}_l(oldsymbol{v}_l,oldsymbol{v}_l)$$

provided
$$\tau_{gd} \lesssim \min\{\nu, \epsilon^{-1}\}.$$

Assumption

$$\sum_{\nu} a_l(\boldsymbol{u}_{\nu}^{\perp}, \boldsymbol{u}_{\nu}^{\perp}) \leq Ca_l(\boldsymbol{u}_l^{\perp}, \boldsymbol{u}_l^{\perp})$$

This clearly holds, for discontinuous, divergence-free elements. What about TH?

For discontinuous pressure spaces we first notice

$$\sum_{m{v}}m{V}_{l,m{v}}=m{V}_{l}$$

and for every decomposition it holds

$$\begin{array}{cccc} \boldsymbol{v}_{l} \in \boldsymbol{V}_{l}^{div} & \Longleftrightarrow & (\boldsymbol{v}_{l}, q_{l}) = 0 & \forall q_{l} \in \boldsymbol{Q}_{l} \\ & \Leftrightarrow & (\sum_{v} v_{l,v}, q_{l,K}) = 0 & \forall K \in \Omega_{l}, \quad q_{l,K} \in \boldsymbol{Q}_{l,K} \\ & \Leftarrow & (v_{l,v}, q_{l,K}) = 0 & \forall v, \quad \forall K \in \Omega_{l,v}, \quad q_{l,K} \in \boldsymbol{Q}_{l,K} \\ & \Leftrightarrow & v_{l,v} \in \boldsymbol{V}_{l,v}^{div} & \forall v \end{array}$$

which means $\sum_{v} V_{l,v}^{div} \subset V_{l}^{div}$.

Introduction	Multigrid	Analysis I	Analysis II	Numerical Results	Summary
Feng & Lo	orton				

Following Feng & Lorton³ we need to consider the assumptions

Assumption

• There exists a positive constant C_a such that

$$|a(v,w)| \leq C_a ||v||_V ||w||_W \quad \forall v \in V, w \in W.$$

• There exists positive constants γ_a, β_a such that

$$\sup_{w \in W} \frac{a(v, w)}{\|w\|_{W}} \le \gamma_{a} \|v\|_{V} \quad \forall v \in V,$$

$$\sup_{v \in V} \frac{a(v, w)}{\|v\|_{V}} \le \beta_{a} \|w\|_{W} \quad \forall w \in W.$$

Which follow by standard techniques for the considered case.

³Xiaobing Feng and Cody Lorton. "On Schwarz Methods for Nonsymmetric and Indefinite Problems". In: *arXiv preprint arXiv:1308.3211* (2013)

26.-27. May 2017

Introduction	Multigrid	Analysis I	Analysis II	Numerical Results	Summary
Norms					

We need to consider the norm

$$\|(\boldsymbol{u},\boldsymbol{p})\|_{\boldsymbol{a}} = \sup_{(\boldsymbol{v},q)} \frac{a((\boldsymbol{u},\boldsymbol{p}),(\boldsymbol{v},q))}{\|(\boldsymbol{v},q)\|_{\boldsymbol{V}\times\boldsymbol{Q}}}$$

and $\|(\mathbf{v}, q)\|$ defined via

$$\|(\boldsymbol{v}, \boldsymbol{q})\|^2 :=
u \|\nabla \boldsymbol{v}\|_0^2 + \gamma \|\nabla \cdot \boldsymbol{u}\|_0^2 + \|\boldsymbol{q}\|_0^2.$$

Introduction	Multigrid	Analysis I	Analysis II	Numerical Results	Summary
Norms					

In particular, we have

$$\begin{aligned} a((\boldsymbol{u},\boldsymbol{p}),(\boldsymbol{v},q)) \\ \lesssim \|(\boldsymbol{u},\boldsymbol{p})\|\|(\boldsymbol{v},q)\| \left(1+\kappa\|\boldsymbol{w}\|_{L^{\infty}}+\min\left\{\frac{1}{\sqrt{\gamma}},\frac{1}{\sqrt{\nu}}\right\}\right) \\ \lesssim \|(\boldsymbol{u},\boldsymbol{p})\|\|(\boldsymbol{v},q)\|_{V\times Q} \left(1+\sqrt{\frac{\gamma}{\nu}}\right) \left(1+\kappa\|\boldsymbol{w}\|_{L^{\infty}}+\min\left\{\frac{1}{\sqrt{\gamma}},\frac{1}{\sqrt{\nu}}\right\}\right) \\ \|(\boldsymbol{u},\boldsymbol{p})\|^{2} &= a((\boldsymbol{u},\boldsymbol{p}),(\boldsymbol{v},q)) \leq \sup_{(\boldsymbol{v},q)}\frac{a((\boldsymbol{u},\boldsymbol{p}),(\boldsymbol{v},q))}{\|(\boldsymbol{v},q)\|} \end{aligned}$$

due to the inf-sup stability of the chosen discrete spaces. Hence, these norms are equivalent for $\gamma \lesssim \nu$.

Introduction Multigrid Analysis I Analysis II Numerical Results Summary
Stable Decomposition

Now, Feng & Lorton require a energy stable decomposition

$$\sum_{\mathbf{v}} \|(oldsymbol{u}_{\mathbf{v}},oldsymbol{
ho}_{\mathbf{v}})\|_{oldsymbol{a}_j} \leq C\|(oldsymbol{u}_{\mathbf{v}},oldsymbol{
ho}_{\mathbf{v}})\|_{oldsymbol{a}}$$

Equivalence of the norms \Rightarrow Proofing for the energy norm sufficient

- standard techniques as before
- requires $\gamma \lesssim \nu$ in general

 \implies The condition number $\kappa_a(P_{ad})$

$$\kappa_a(P_{ad}) := \|P_{ad}\|_a \|P_{ad}^{-1}\|_a$$

of the two-level preconditioner defined by the local Schwarz smoothers is bounded.

26.-27. May 2017

Introduction Multigrid Analysis I Analysis II Numerical Results Summary

Numerical Results - Test Problem

We consider the test problem

$$-\nu\Delta u + \nabla p = -\nu\Delta u_{ref} + \nabla p_{ref}$$
$$\nabla \cdot u = 0$$

with the reference solution

$$u(x,y) = \begin{pmatrix} \sin(\pi x)\sin(\pi x)\sin(2\pi y)\pi/2\\ -\sin(\pi y)\sin(\pi y)\sin(2\pi x)\pi/2 \end{pmatrix}$$

$$p(x,y) = \sin(\pi x)\cos(\pi y).$$

Observe for $\nu = 10^{-6}$

- errors
- iteration counts (error reduction by 10^{-6}).

Introduction	Multigric	Analysis	Analysis I	Numerio	al Results	Summary
N 1	1.5	 <u> </u>		 5		

Introduction	Multigrid	Analysis I		Analysis II	Numerica	al Results	Summary
		 •	1.01		 -		

AL LED U			D .	
introduction Mangina	Analysis	Analysis ii	Numerical riesuits	Summary
Introduction Multiarid	Analysis I	Analysis II	Numerical Results	Summary

NI 1 1 D				-	
Introduction Multig	grid Analysis	I Analysis	II Numerical	Results	Summary

Introduction	Multigrid	Analysis I	Analysis II	Numerical Results	Summary
Numerical	Results				

			Refinement						
Element	u	1	2	3	4	5	6		
$\mathbb{Q}_2/\mathbb{P}_1^-$	10 ⁰	$1 \cdot 10^{-7}$	$1 \cdot 10^{-8}$	$5 \cdot 10^{-4}$	$3 \cdot 10^{-3}$	$8 \cdot 10^{-1}$	$3 \cdot 10^{0}$		
$\mathbb{Q}_2/\mathbb{Q}_1$	10 ⁰	$5 \cdot 10^{-1}$	$5 \cdot 10^{-1}$	$1 \cdot 10^{-1}$	$1 \cdot 10^{-8}$	$1 \cdot 10^{-8}$	$1 \cdot 10^{-8}$		
$\mathbb{Q}_2/\mathbb{P}_1^-$	10^{-6}	1 · 10 ⁰	$3 \cdot 10^1$	$2 \cdot 10^{1}$	$5 \cdot 10^1$	$1 \cdot 10^{2}$	$9 \cdot 10^1$		
$\mathbb{Q}_2/\mathbb{Q}_1$	10 ⁻⁶	9 · 10 ⁰	$9 \cdot 10^1$	$9 \cdot 10^1$	$2 \cdot 10^{2}$	$5 \cdot 10^2$	$4 \cdot 10^{2}$		
$\mathbb{Q}_3/\mathbb{P}_2^-$	10 ⁰	$1 \cdot 10^{-6}$	$1 \cdot 10^{-5}$	$2 \cdot 10^{-3}$	$5 \cdot 10^{-1}$	2 · 10 ⁰	$7 \cdot 10^{1}$		
$\mathbb{Q}_3/\mathbb{Q}_2$	10 ⁰	$5 \cdot 10^{-4}$	$2 \cdot 10^{-2}$	$1 \cdot 10^{0}$	$2 \cdot 10^{0}$	$2 \cdot 10^{0}$	$1 \cdot 10^{0}$		
$\mathbb{Q}_3/\mathbb{P}_2^-$	10 ⁻⁶	1 · 10 ⁵	$5 \cdot 10^3$	$4 \cdot 10^{0}$	$1 \cdot 10^{1}$	$5 \cdot 10^2$	$9 \cdot 10^{-1}$		
$\mathbb{Q}_3/\mathbb{Q}_2$	10 ⁻⁶	1 · 10 ⁵	$8 \cdot 10^{2}$	$6 \cdot 10^1$	$4 \cdot 10^1$	$4 \cdot 10^2$	$5 \cdot 10^{-1}$		
		T 11 O							

Table : Optimal stabilization parameter

#Levels	0	1	2	3	4
RT1, 2D	3	9	10	11	13
RT2, 2D	3	9	10	11	11
RT1, 3D	3	13	16	20	

Table : Iteration counts for Raviart-Thomas elements

Introduction Multigrid Analysis I Analysis II Numerical Results Summary

Numerical Results - Iteration Counts - $\mathbb{Q}_2/\mathbb{P}_1^-$ - $\eta = \frac{1}{4}$ - 2D

			$\tau_{\rm gd}$		
#Levels	10 ⁰	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴
0	2	2	2	2	2
1	24	23	27	22	17
2	70	65	57	43	25
3	236	159	93	48	27
4	459	247	105	49	28

			$ au_{gd}$		
#Levels	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷	10 ⁻⁸	10 ⁻⁹
0	2	2	2	2	2
1	14	12	13	13	13
2	19	18	18	18	18
3	19	19	19	19	19
4	19	18	19	20	20

26.-27. May 2017

Numerical Results - Iteration Counts - $\mathbb{Q}_2/\mathbb{Q}_1$ - $\eta = \frac{1}{8}$ - 2D

			$ au_{\it gd}$		
#Levels	10 ⁰	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴
0	2	2	2	2	2
1	35	31	36	28	22
2	137	98	85	59	31
3	454	294	159	71	37
4	-	610	190	76	38

			$ au_{gd}$		
#Levels	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷	10 ⁻⁸	10 ⁻⁹
0	2	2	2	2	2
1	17	17	17	17	17
2	23	24	24	25	25
3	28	31	34	35	35
4	28	33	38	39	39

Numerical Results - Iteration Counts - $\mathbb{Q}_3/\mathbb{P}_2^-$ - $\eta = \frac{1}{4}$ - 2D

			$ au_{\it gd}$		
#Levels	10 ⁰	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴
0	2	2	2	2	2
1	12	12	13	14	15
2	19	19	19	20	17
3	30	30	29	24	16
4	39	38	35	24	16

			$ au_{gd}$		
#Levels	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷	10 ⁻⁸	10 ⁻⁹
0	2	2	3	3	2
1	15	16	16	16	16
2	15	17	18	18	18
3	15	17	18	18	18
4	14	16	18	18	18

Numerical Results - Iteration Counts - $\mathbb{Q}_3/\mathbb{Q}_2$ - $\eta = \frac{1}{8}$ - 2D

	$ au_{gd}$								
#Levels	10 ⁰	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴				
0	2	2	2	2	2				
1	19	19	20	20	21				
2	31	31	31	27	25				
3	36	35	33	32	25				
4	50	50	50	36	25				

	$ au_{gd}$								
#Levels	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷	10 ⁻⁸	10 ⁻⁹				
0	2	2	2	2	2				
1	21	22	22	22	22				
2	25	28	31	31	31				
3	26	30	33	34	34				
4	27	32	37	37	38				

26.-27. May 2017

	$ au_{gd}$								
#Levels	10 ⁰	10 ⁻¹	10 ⁻²	10 ⁻³	10^{-4}				
0	2	2	2	2	2				
1	72	64	59	40	24				
2	426	264	146	65	37				
3	928	402	149	67	37				

	$ au_{gd}$								
#Levels	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷	10 ⁻⁸	10 ⁻⁹				
0	2	2	2	2	2				
1	21	20	21	21	21				
2	26	28	29	30	30				
3	27	29	31	31	31				

Introduction	Multigrid	Analysis I	Analysis II	Numerical Results	Summary
Summary					

Results

- Local schwarz smoothers applicable for inf-sup stable conforming elements
- Comparable results to Raviart-Thomas elements
- $\mathbb{Q}_{k+1}/\mathbb{P}_k^-$ elements perform much better than $\mathbb{Q}_{k+1}/\mathbb{Q}_k$ elements
- Analysis requires $\tau_{gd} \lesssim \nu$; sharpness confirmed by numerical results
- Positive effect of stabilization especially for $\mathbb{Q}_{k+1}/\mathbb{Q}_k$ elements

Outlook/Challenges:

- Consider also convection dominated problems (Oseen, Navier-Stokes)
- Lift the restriction $\tau_{\rm gd} \lesssim \nu$
- Complete the multigrid analysis

Thank you for your attention!

Numerical Results - Iteration Counts

- 2D
- $\nu = 10^{-6}$
- multiplicative smoother
- with smoother relaxation term of 1.

	$\mathbb{Q}_2 \times \mathbb{Q}_1$			$\mathbb{Q}_2 \times \mathbb{P}_1^-$			$Q_2^+ \times \mathbb{Q}_1$			$\mathbb{Q}_2 \times (\mathbb{Q}_1 + \mathbb{Q}_0)$		
	γ			γ			γ			γ		
GR	0.0	10 ⁻⁶	1.0	0.0	10 ⁻⁶	1.0	0.0	10 ⁻⁶	1.0	0.0	10^{-6}	1.0
0	1	1	1	1	1	1	1	1	1	1	1	1
1	6	6	16	3	3	9	18	17	38	7	6	16
2	9	8	49	5	5	32	28	34	97	21	19	58
3	10	9	138	6	5	89	37	40	553	65	60	381
4	11	9	282	6	5	195	38	41	1000f	-	-	-

Numerical Results - Iteration Counts

- 2D
- $\nu = 10^{-6}$
- multiplicative smoother
- with smoother relaxation term of 1.0 for all elements

	$\mathbb{Q}_3 \times \mathbb{Q}_2$			$\mathbb{Q}_3 \times \mathbb{P}_2^-$			$Q_3^+ \times \mathbb{Q}_2$			$\mathbb{Q}_3 \times (\mathbb{Q}_2 + \mathbb{Q}_0)$		
	γ			γ		γ			γ			
GR	0.0	10 ⁻⁶	1.0	0.0	10 ⁻⁶	1.0	0.0	10^{-6}	1.0	0.0	10 ⁻⁶	1.0
0	1	1	1	1	1	1	1	1	1	1	1	1
1	5	5	5	3	3	3	16	16	27	7	8	6
2	9	9	10	4	4	6	32	35	44	17	16	12
3	12	11	18	4	3	8	39	41	76	31	28	22
4	13	11	31	3	3	8	46	44	156	57	50	37

Numerical Results - Iteration Counts

3D

$$\nu = 1^{-6}$$

- additive smoother
- with smoother relaxation term of .25 for all elements

	$\mathbb{Q}_2 \times \mathbb{Q}_1$			$\mathbb{Q}_2 \times \mathbb{P}_1^-$			$Q_2^+ imes \mathbb{Q}_1$			$\mathbb{Q}_2 \times (\mathbb{Q}_1 + \mathbb{Q}_0)$		
		γ			γ			γ			γ	
GR	0.0	10^{-6}	1.0	0.0	10 ⁻⁶	1.0	0.0	10^{-6}	1.0	0.0	10^{-6}	1.0
0	2	2	2	2	2	2	2	2	5	2	2	2
1	35	34	477	21	20	72	183	177	1000f	38	32	194
2	1000f	1000f	1000f	30	38	426	1000f	1000f	1000f	1000f	1000f	1000f