Homework No. 7 Numerical Methods for PDE, Winter 2013/14

Problem 7.1: H^1 - and L^2 -Error Estimates (6 points)

Consider the Neumann problem

 $\begin{aligned} -\Delta u + u &= f, & \text{in } \Omega, \\ \partial_n u &= 0, & \text{on } \partial \Omega, \end{aligned}$

where Ω is a convex polygonal domain in \mathbb{R}^2 .

We want to use a conforming FE method with piecewise linear finite elements ($V_h \subset H^1(\Omega)$) to approximate the above problem.

- (a) Formulate the variational equation and its approximation, and name the ansatz spaces V_h .
- (b) Derive an error estimate in the H^1 -norm.
- (c) Derive an error estimate in the L^2 -norm by Aubin's and Nitsche's duality argument.

Problem 7.2: Special A Posteriori Error Estimators (6 points)

Consider the general Neumann problem

$$\begin{split} -\nabla\cdot (\alpha(x)\nabla u(x)) + \gamma(x)u(x) &= f(x) & \quad \text{in } \Omega\\ n(x)\cdot (\alpha(x)\nabla u(x)) &= g(x) & \quad \text{on } \partial\Omega \end{split}$$

with smooth data functions α, γ, f, g and $\alpha(x) \ge \tilde{\alpha} > 0$ and $\gamma(x) \ge \tilde{\gamma} > 0$. The domain $\Omega \subset \mathbb{R}^2$ is again a convex polygon.

- (a) Derive the weak formulation as usual and discretize the equation with piecewise linear finite elements.
- (b) Formulate the dual problem for a general error functional $J(\varphi)$.
- (c) Derive an error representation for the error $e_h = u u_h$ in the functional $J(\cdot)$ by cellwise dual weighted residuals analogously to the proceeding in the lecture.
- (d) Derive an a posteriori error estimation for the error in the L^2 -norm $||e_h||_{L^2(\Omega)}$. Hint: Use the nodal interpolant $\psi_h := \prod_{\mathcal{Z}} z$ and their properties.