Homework No. 6
 Numerical Methods for PDE, Winter 2013/14

Problem 6.1: Corner singularity (10 points)

Let the domain $\Omega \subset \mathbb{R}^{2}$ be the sector

with radius $R=1$ and interior angle ω. In polar coordinates, this domain is described by $r \in(0,1)$ and $\vartheta \in(0, \omega)$.
(a) Verify: The Laplace equation in polar coordinates is

$$
-\frac{\partial^{2}}{\partial r^{2}} u(r, \vartheta)-\frac{1}{r} \frac{\partial}{\partial r} u(r, \vartheta)-\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \vartheta^{2}} u(r, \vartheta)=f(r, \vartheta)
$$

(b) Verify that the function

$$
u(r, \vartheta)=r^{\frac{\pi}{\omega}} \sin \left(\frac{\pi}{\omega} \vartheta\right)
$$

solves the Laplace equation with zero boundary values on the legs of the angle and smooth boundary values $\sin \left(\frac{\pi}{\omega} \vartheta\right)$ on the circumference.
(c) Show that $u \notin W^{2,2}(\Omega)$ if $\omega>\pi$. Hint: It is sufficient to consider the derivative $\partial_{r r} u$.
(d) Show that on a triangle of size h containing the origin, this function cannot be approximated by linear functions better than

$$
\left|u-u_{h}\right|_{1} \lesssim h^{\frac{\pi}{\omega}}
$$

Here, the operator " \lesssim " means: there is a positive constant c independent of h (but in this case depending on u) such that $\left|u-u_{h}\right|_{1} \leq h^{\frac{\pi}{\omega}}$

Problem 6.2: Meshes (4 points) Draw a shape regular mesh into the following domain:

