Homework No. 5 Numerical Methods for PDE, Winter 2013/14

Due date: 29.11.2013

Problem 5.1: Transformation of Quadrilaterals (6 points)

Transformation from the reference square $\hat{Q} = [0, 1]^2$ to a general quadrilateral given by vertices $p^i = (x_i, y_i)^T$ for $i = 1, \dots, 4$ can be obtained by the mapping F with

$$F(\xi) = p^{1}(1 - \xi)(1 - \eta) + p^{2}(1 - \eta)\xi + p^{3}\eta(1 - \xi) + p^{4}\xi\eta.$$

Here, $\boldsymbol{\xi} = (\xi, \eta)^T$. The order of vertices follows the scheme

- (a) Show that indeed $Q = F(\widehat{Q})$.
- **(b)** Compute $\nabla F(\boldsymbol{\xi})$.
- (c) Compute the Jacobi determinant $J(\xi)$ and show that $J(\xi) \ge 0$, if and only if the quadrilateral is convex.
- (d) Compute the eigenvalues of $(\nabla F(\boldsymbol{\xi}))^T \nabla F(\boldsymbol{\xi})$ and relate them to $\|\nabla F(\boldsymbol{\xi})\|$ and $\|\nabla (F(\boldsymbol{\xi}))^{-1}\|$.
- (e) What happens to $J(\xi)$, $\|\nabla F(\xi)\|$ and $\|(\nabla F(\xi))^{-1}\|$ at p^1 if p^2 gets close to p^1 ?

Problem 5.2: Trace inequality for polynomials (4 points)

Let K be a shape regular triangle of diameter h. Show that for any polynomial $p \in P_k$ holds

$$||p||_{\partial K} \le Ch^{-\frac{1}{2}}||p||_{K}$$

 $||p||_{\partial K} \le Ch^{\frac{1}{2}}||\nabla p||_{K}$

with constants C depending on the degree k and the constant of shape regularity.

Problem 5.3: Connection between the Shape of Triangles and the Stiffness Matrix (4 points)

We discretize the Poisson problem by piecewise linear finite elements on a triangulation of the unite square. Consider an arbitrary triangle T in this triangulation.

The nodal basis functions φ_i have the properties $\varphi_i(p_j) = \delta_{ij}$, i, j = 1, 2, 3.

(a) Show that

$$(\nabla \varphi_i, \nabla \varphi_i)_T > 0 \qquad \text{and} \qquad (\nabla \varphi_i, \nabla \varphi_j)_T \leq 0, \qquad i \neq j$$

as long as all interior angles are equal or smaller than $\frac{\pi}{2}$.

(b) The entries of the stiffness matrix are given by

$$a_{ij} = \sum_{T \in \mathcal{T}_b} (\nabla \varphi_i, \nabla \varphi_j)_T.$$

Conclude from the first part of the exercise that the diagonal entries of the matrix are always positive and the off-diagonal entries are smaller or equal to zero.

(c) Bonus (3 points): Show that furthermore the conditions

$$\sum_{j \neq i} |a_{ij}| \le a_{ii}, \qquad \sum_{j \neq i^{\star}} |a_{i^{\star}j}| < a_{i^{\star}i^{\star}} \qquad \text{for a fixed } i^{\star}$$

are fulfilled. Discuss the properties of the matrix.