Homework No. 4 Numerical Methods for PDE, Winter 2013/14

Problem 4.1: Convection-Diffusion-Reaction Equation

Given is the problem

$$Lu = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \Gamma_D,$$

$$\partial_n u = 0 \quad \text{on } \Gamma_N.$$

on a domain $\Omega \subset \mathbb{R}^d$ with sufficiently smooth boundary, which is divided in a Dirichlet boundary part Γ_D and a Neumann boundary part Γ_N .

The operator

$$Lu(x) = -\nabla \cdot (a\nabla u(x)) + \beta(x) \cdot u(x) + r(x)u(x)$$

has sufficiently smooth data functions $\beta(x)$ and r(x) and the parameter a is positive.

(a) Deduce the variational formulation from the classical formulation above for the function space

$$V = H^1_{\Gamma_D}(\Omega) := \{ \varphi \in H^1(\Omega) : \varphi|_{\Gamma_D} = 0 \}.$$

- (b) Prove unique existence of a solution in case the following three assumptions hold:
 - $\Gamma_D = \partial \Omega$ (the whole boundary has homogeneous Dirichlet data),
 - $\nabla \cdot \beta = 0$ (solenoidal transport field),
 - $r(x) \ge r > 0$.
- (c) Bonus (2 points): Discuss the unique solvability in the original setting. Do we need conditions on $\beta(x)$ and r(x)? Try to find a more general condition for $\beta(x)$ and r(x) than in (b).

Hint: You can use the generalized Poincaré's inequality

$$||u|| \le c_P ||\nabla u||$$

for functions in $H^1_{\Gamma_D}(\Omega)$ where Γ_D has positive boundary measure.

Problem 4.2: Integral node functionals A finite element on a triangle shall consist of the space of quadratic polynomials P_2 and shall utilize the node functionals \mathcal{N}_i defined by

$$\mathcal{N}_i(f) = f(p^i)$$
 $i = 1, 2, 3,$
 $\mathcal{N}_i(f) = \frac{1}{|E_{i-3}|} \int_{E_{i-3}} f(x) \, ds,$ $i = 4, 5, 6.$

Here, E_i is the edge of the triangle facing the vertex p^i , and $|E_i|$ is its measure.

- (a) Show that this element is unisolvent.
- **(b)** Derive a basis $\{\varphi_j\}$ for P_2 such that $\mathcal{N}_i(\varphi_j) = \delta_{ij}$.

Problem 4.3: Unisolvence The bilinear quadrilateral element was introduced in class as a parametric element. Here we want to study the nonparametric version. Let $Q_1 = \text{span}\{1, x, y, xy\}$. Let the cell K be the square with corners

$$p^1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, p^2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, p^3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, p^4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

The node values \mathcal{N}_i of the finite element are the function values in the corners.

- (a) Show that the element defined this way is not unisolvent.
- **(b)** Why is the parametric element unisolvent on K?
- (c) Sketch the shape functions of the parametric Q_1 element on the cell K.

Due date: 23.11.2013