Homework No. 3
 Numerical Methods for PDE, Winter 2013/14

Problem 3.1: Trilinearform

For $\Omega \subset \mathbb{R}^{2}$ consider the term

$$
c(w ; u, v)=(w \cdot \nabla u, v), \quad c(\cdot ; \cdot, \cdot): W \times V \times V \rightarrow \mathbb{R}, \quad \text { with } W=H_{0}^{1}\left(\Omega ; \mathbb{R}^{2}\right), \quad \text { and } \quad V=H_{0}^{1}(\Omega)
$$

Note: The semicolon indicates that we will later on use w as data, such that $c(w ; .,$.$) is a bilinearform which fits into our$ existing framework.
(a) Show that $c(\cdot ; \cdot, \cdot)$ is linear in each variable (altogether trilinear) and continuous.

Hint: Show that $|c(w ; u, v)|$ is bounded. Use the Sobolev embedding theorem.
(b) Show that the following identity holds:

$$
(w \cdot \nabla u, u)=-\frac{1}{2}\left(\nabla \cdot w, u^{2}\right)
$$

Hint: The notation

$$
\nabla \cdot \varphi:=\partial_{x_{1}} \varphi_{1}+\partial_{x_{2}} \varphi_{2}
$$

denotes the divergence of a sufficiently regular vector field $\varphi(x)=\left(\varphi_{1}(x), \varphi_{2}(x)\right)^{T}$.
(c) Deduce an analogous formula for $w \in H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ and $u \in H^{1}(\Omega)$ without zero boundary conditions.

Problem 3.2: Galerkin equations

Starting point is the one-dimensional problem

$$
-u^{\prime \prime}+u=f \quad \text { in } \Omega=(0,1)
$$

for the space $V=H_{0}^{1}(\Omega)$.
We consider the equidistant mesh

$$
x_{j}=j h, \quad j=0, \ldots, N, \quad \text { with } h=\frac{1}{N}
$$

on the interval Ω with N mesh cells $I_{j}=\left(x_{j-1}, x_{j}\right)$. The finite-dimensional subspace V_{h} is now the span of piecewise linear functions

$$
\varphi_{j}(x)= \begin{cases}\frac{x-x_{j-1}}{h}, & \text { if } x \in\left(x_{j-1}, x_{j}\right] \\ \frac{x_{j+1}-x}{h}, & \text { if } x \in\left(x_{j}, x_{j+1}\right) \\ 0, & \text { otherwise }\end{cases}
$$

where $j=1, \ldots, N-1$.
(a) Sketch the domain Ω with its subdivision and a reasonable number of functions φ_{j}.
(b) Argue that the space V_{h} contains exactly all functions which are linear on each cell I_{j}, continuous on Ω and have zero boundary conditions.
(c) Set up the Galerkin equations.
(d) Compute the 2×2 cell matrices A_{k} and cell vectors b_{K}.
(e) Assemble the cell matrices and cell vectors into the global matrix A and the global vector b.
(f) Bonus (2 points): Calculate the solution of Galerkin equations for the right hand side $f(x)=1$ and plot it for $N=$ $5,10,20,40,100$ in one figure.

