Homework No. 1

Numerical Methods for PDE, Winter 2013/14

Problem 1.1: Variational equations in \mathbb{R}^{n}

Given a symmetric, positive definite matrix $A \in \mathbb{R}^{n \times n}$ and a vector $b \in \mathbb{R}^{n}$ and the "energy functional"

$$
\begin{equation*}
E(x)=\frac{1}{2} x^{T} A x-x^{T} b, \tag{1.1}
\end{equation*}
$$

(a) Derive the variational equation of the minimization problem by studying the derivative of the auxiliary function $\Phi(t)=$ $E(x+t y)$ for arbitrary $y \in \mathbb{R}^{n}$.
(b) Show that a vector $x \in \mathbb{R}^{n}$ minimizes $E(x)$, that is,

$$
E(x) \leq E(y) \quad \forall y \in \mathbb{R}^{n},
$$

if and only if

$$
A x=b \text {. }
$$

(c) Conclude that the minimizer x exists and is unique.

Problem 1.2: Minimizing sequence

(a) Show that a sequence $\left\{x^{(k)}\right\}$ such that for the energy functional in (1.1) holds

$$
\begin{equation*}
E\left(x^{(k)}\right) \rightarrow \inf _{y \in \mathbb{R}^{d}} E(y) \tag{1.2}
\end{equation*}
$$

necessarily converges to the minimizer x from Problem 1.1. The "binomial formula" $x^{T} A x-y^{T} A y=(x+y)^{T} A(x-y)$ and the fact that A is invertible are useful ingredients to this proof.
(b) Show without assuming the existence of the minimizer x, that a sequence $\left\{x^{(k)}\right\}$, for which (1.2) holds is necessarily a Cauchy sequence. Can you conclude the existence of a minimizer x ?

Problem 1.3: Integration by parts

Let Ω be a domain in \mathbb{R}^{d}. Use the Gauß theorem for smooth vector fields $\varphi: \Omega \rightarrow \mathbb{R}^{d}$, namely,

$$
\int_{\Omega} \nabla \cdot \varphi \mathrm{d} x=\int_{\partial \Omega} \varphi \cdot \mathbf{n} \mathrm{d} s
$$

to show Green's first and second formula (for smooth scalar functions u and v)

$$
\begin{aligned}
-\int_{\Omega} \Delta u v \mathrm{~d} x & =\int_{\Omega} \nabla u \cdot \nabla \mathrm{~d} x-\int_{\partial \Omega} \partial_{n} u v \mathrm{~d} s \\
\int_{\Omega}(u \Delta v-v \Delta u) \mathrm{d} x & =\int_{\partial \Omega}\left(u \partial_{n} v-v \partial_{n} u\right) \mathrm{d} s .
\end{aligned}
$$

Here, \mathbf{n} is the outward unit normal vector to Ω on $\partial \Omega$. The differential operators have the meaning:

$$
\begin{aligned}
\nabla u & =\left(\partial_{1} u, \ldots, \partial_{d} u\right)^{T} & & \text { gradient } \\
\partial_{n} u & =\mathbf{n} \cdot \nabla u & & \text { normal derivative } \\
\nabla \cdot \varphi & =\partial_{1} \varphi_{1}+\cdots+\partial_{d} \varphi_{d} & & \text { divergence } \\
\Delta u & =\nabla \cdot \nabla u=\partial_{11} u+\cdots+\partial_{d d} u & & \text { Laplacian }
\end{aligned}
$$

